BHARATI VIDYAPEETH UNIVERSITY COLLEGE OF ENGINEERING

CHEMICAL ENGINEERING DEPARTMENT

M.TECH CHEMICAL (CBCS -2015 COURSE)

M.TECH STRUCTURE (CHEMICAL) Choice Based Credit System

SEMESTER-I

Semester	Ι					То	tal Dura	tion: 20 hrs	s/week			
							Т	'otal Ma	rks : 500			
							Т	otal Cre	edits: 18			
Subject Code	Subject	Teaching Scheme (Hrs)					ation Scheme Marks)			Examination Scheme		Total Credit s
		Hrs./V	Veek							(Cr	edits)	
		L	Р	Theor y	Unit Test	Attend ance	Tutorial/as signments	TW	Pract/ Oral	тн	TW/P R/OR	
K10501	Applied Mathematics for Chemical Engineering	04	02	60	20	10	10	25	25	04	01	05
K10502	Advanced Momentum and Heat Transfer	04		60	20	10	10	_		04	-	04
K10503	Thermodynamics of Phase Equilibria	04		60	20	10	10	-	-	04	-	04
K10504	Multiphase Reactors	04	02	60	20	10	10	25	25	04	01	05
	Total	16	04	240	80	40	40	50	50	16	02	18

SEMESTER-II

Semester II

Total Marks : 500

Total Credits: 18

Subject Code	Subject	Teaching Scheme (Hrs) Hrs./Week		Examination Scheme (Marks)							Examination Scheme (Credits)	
		L	Р	Theo ry	Unit Test	Attenda nce	Tutorial /assign ments	TW	Pract/ Oral	ТН	TW/ PR/O R	
K10505	Modeling & Simulation of Chemical Processes	04	02	60	20	10	10	25	25	04	01	05
K10506	Chemical Reactor Analysis and Design	04		60	20	10	10			04		04
K10507	Synthesis & Design of Chemical Processes	04		60	20	10	10			04		04
K10508	Advanced Mass Transfer	04	02	60	20	10	10	25	25	04	01	05
	Total	16	04	240	80	40	40	50	50	16	02	18

SEMESTER-III

Semester III									Total Duration: 28 hrs/week					
								Total M	arks: 47	5				
								Total Cr	redits: 40)				
Subject Code	Subject	Scl (H	ching heme Irs) /Week			Examinati	on Scheme			Sc	nination heme redits)	Total Credits		
		L	Р	Theory	Unit Test	Attenda nce	Tutorial/ assignme nts	TW	Pract/ Oral	ТН	TW/PR /OR			
K10601	Elective –I	04	02	60	20	10	10	25	25	04	01	05		
K10602	Elective –II	04	02	60	20	10	10	25	25	04	01	05		
	**Self-Study Paper-I	* 04		60	20	10	10	-	-	04	-	04		
K10604	Dissertation Stage –I	-	07	-	-			25			21	21		
K10603	Seminar	-	05	-	-			25	25	-	05	05		
	Total	12	16	180	60	30	30	100	75	12	28	40		

Elective – I	Elective - II
Advanced Process Control	Membrane Separation
Non Conventional Energy Sources	Bio-process Engineering
Industrial Waste Water Treatment	Multicomponent Separation
Heterogeneous Catalysis	Food Process Engineering
Catalyst Materials	Fluidization Engineering

SEMESTER-IV

Semester IV

Total Duration: 14 hrs/week

Total Marks : 325

Total Credits: 34

Subject Code	Subject	Sch (H	ching ieme Irs) Week		Examination Scheme			Scl	nination heme redits)	Total Credits		
		L	Р	Theory	Unit Test	Attenda nce	Tutorial/ assignme nts	TW	Pract/ Oral	ТН	TW/PR /OR	
	**Self-Study Paper-II	* 04		60	20	10	10	-	-	04	-	04
K10605	Dissertation Stage –II	-	10	-	-		-	150	75		30	30
	Total	04	10	60	20	10	10	150	75	04	30	34

Sr.No.	SELF STUDY PAPER- I	SELF STUDY PAPER- II
	(SEM-III)	(SEM-IV)
1	Optimization Techniques in Process design	Technology Transfer Practices –Bridge to Industry
2	Non Conventional Energy System	Polymer Engineering
3	Mechanical Aspects in Chemical Engineering	Food Technology
4	Green Chemistry & Technology	Modeling & Simulation of Processes
5	Cavitation Techniques	Nanoscience
6	Safety Engineering in Industries	Petrochemical Engineering
7	Petroleum Engineering	Physical Concepts of Unit Operations
8	Fluid Particle Technology	Multiphase Reactor Engineering

SEMSETER-I

K10501 APPLIED MATHEMATICS FOR CHEMICAL ENGINEERING

TEACHIN	IG SCHEME:	EXAMINATION SCHEME:	CREDITS A	LLOTTED:				
Lectures : 4	Hours/Week	End Semester Examination: 60 Marks	Theory: 04					
Practical: 2	Hour /Week	Unit Test: 20 Marks	Practical: 01					
Total : 6	Hours/Week	Assignment: 10 Marks	Total credits: (05				
		Attendance:10 Marks						
		TW :25 Marks						
		Oral:25 Marks						
		Total :150 Marks						
		Topics covered						
UNIT-I	Introduction:			(08 Hours)				
	Approximation and rou	ind-off errors, significant figures, accuracy and	precision, error	(***)				
		errors. Taylor series, error propagation, total						
	formulation errors and	data uncertainty. Tests of significance. Analysis	s of variance.					
UNIT-II	IT-II Numerical solution of linear & nonlinear algebraic equations:							
		tions, solutions by Creamer's Rule, Matrix me	thods, Gaussian,	(08 Hours)				
	Gauss-Jordan, Jacobea	n, Gauss-Seidel and Relation methods. Non-l	inear equations:					
		, Secant and Newton- Raphson methods.						
UNIT-III	Curve fitting:			(08 Hours)				
		on: Linear regression, polynomial regression						
		ference interpolating polynomials, Lagrang						
		t of an interpolating polynomial. Fourier appro	ximation.					
UNIT-IV	Numerical integration			(08 Hours)				
		on of equations. Integration of equations: Rom	berg integration,					
	Gauss Quadrature. Partial differential eq	notional						
			lamant mathod					
	Finite difference: Elliptic equations, parabolic equations, finite element method. Diffusion/convection form of partial differential equations in chemical engineering.							
	Characteristics and partial differential equation types and their analytical solution.							
	Characteristics and par	that differential equation types and their analytic	sur solution.					
UNIT-V	Numerical solution of	ordinary differential equations:		(08 Hours)				
	Formulation of linear	and non-linear first and second order ordin	nary differential					
	equations, higher or	der linear, differential equations for sys	tems involving					
		mass transfer with and without chemical rea						
		dinary differential equations: Runge-Kutta, Eu						
		ethods. Boundary-value and eigenvalue p	problems,general					
	methods of boundary-v							
UNIT-VI		s and engineering problem-solving:	1	(08 Hours)				
		of experiments: data analysis, treatment, gen						
		eering data. Formulation of physical problem						
		oblem, representation of problems, problem						
	appropriate mathematic	cal method, analysis of results with statical tests						

Term Work:

Oral examination will consist of assessment of the termwork (duly certified by the teacher and HOD) and oral exam

based on the term work/practical. The term work shall consist of the following:

Minimum 8 practical based on solving numerical methods mentioned in the syllabus using C, C++ language, or TK

solver software, or any chemical Engineering Software.

Assignment: : Each student will submit assignments based on different topics in consultation with faculty, in the area of application of mathematics in chemical engineering, keeping track of the recent technological trends and developments..

	K10502 ADVA	NCED MOMENTUM AND HEAT TI	RANFER		
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LOTTED:	
	Hours/Week	End Semester Examination: 60 Marks	Theory: 04		
Total : 4	Hours/Week	Unit Test: 20 Marks	Total credits: ()4	
	Assignment: 10 Marks				
		Attendance:10 Marks			
		Total :100 Marks			
	-	Topics covered			
UNIT-I		flow: Newtonian and non Newtonian flui		(08 Hours)	
	-	ort properties of gases and liquids; effect	of pressure and		
	temperature.				
		tum transport in laminar flow (shell ba			
		pproach to momentum transfer problems;			
	-	or flow of Newtonian and non-Newtonian	fluids in pipes,		
		luid flow of two immiscible fluids.			
UNIT-II		of fluid flow: Control volume approa		(08 Hours)	
		er-Stokes Equation and Bernoulli's equation	on; Applications		
	of differential equations of		TT 1 1 /		
		nomentum transfer: Description of turbul			
		ing length hypothesis, velocity distribution			
		al velocity distribution; The turbulent bour	idary layer on a		
UNIT-III	flat plate	luits: Friction factors for fully developed la	minar turbulent	(08 Hours)	
01111-111		ular conduits; Friction factors for flow in t		(00 11001 5)	
	circular conduit; Friction fa		ne chuance to a		
		balances: The macroscopic mass, momenti	im and		
	-	s; Use of macroscopic balances for steady-s			
		es for unsteady-state problems.	fute procrems,		
UNIT-IV		transport: Fourier's law of heat condu	ction; Thermal	(08 Hours)	
		solids; Effective thermal conductivity of co		(,	
	<i>v</i> 1	n in solids and in laminar flow: Heat con			
	-	conduction in a cooling Fin; Forced co	•		
	convection.	c			
UNIT-V	The equation of change	for non isothermal systems: The equation	of energy; The	(08 Hours)	
	equation of motion for for	rced and free convection; Use of equation	ns of change to		
	solve the steady-state prob	lems			
		on in Solids: Heating of a semi-infinite sla			
		conduction near the wall with sinusoidal hea			
	-	n in turbulent flow: Time smoothed equation	Ũ		
	-	mal flow; Time smoothed temperature prof			
		r the turbulent heat flux; Temperature	distribution for		
	turbulent flow in tubes			(0.0.77	
UNIT-VI		non-isothermal systems: Heat transfer		(08 Hours)	
		s and through packed beds; Heat transfer			
	tree and mixed convection	; Heat transfer coefficients for condensation	n of pure vapors		

	on solid surfaces. Analogies of momen	tum and heat transfer: Reynolds and Chilton Colburn analogy
Assignmen	t: Each student will s	ubmit assignments based on different topics in consultation with faculty, in
the area o	f advanced momentum	n and heat transfer, keeping track of the recent technological trends and
developme	ents.	
Text Books	s/References:	
1. W.	E. Stewart, E. N. Light	foot, R. B. Bird, "Transport Phenomena", John Wiley & Sons
	R. Welty, C. W. Wicks iley INDIA	, R. E. Wilson, G. Rorrer, "Fundamentals of momentum, heat and mass transfer,
3. J.C	C. Slattery, "Advanced tr	ansport phenomena", Cambridge University Press
4. J.	G. Knudsen, D. L. Kaz,	'Fluid Dynamics and Heat Transfer", McGraw Hill
Syllabus fo	or Unit Test:	
Unit Test -I	-	UNIT – I ,II,III
Unit Test -I	Ι	UNIT – IV,V,VI

K10503 THERMODYAMICS OF PHASE EQUILIBRIA

TEACHIN	<u>G SCHEME:</u>	EXAMINATION SCHEME:	CREDITS AI	LOTTED:		
Lectures: 4]	Hours/Week	End Semester Examination: 60 Marks	Theory: 04			
Fotal : 4H	Hours/Week	Unit Test: 20 Marks	Total credits: ()4		
		Assignment: 10 Marks				
		Attendance:10 Marks				
		Total :100 Marks				
UNIT-I	Thormodynamics of	Topics covered Multicomponent mixtures:		(08 Hours)		
UINI I -I	Ideal mixtures and e and solid mixtures, Modified Roult's law	xcess mixture properties, Fugacity of species in Criteria for phase equilibrium in multicomp and its significance, Gibbs Duhem equation, Hy	ponent systems,	(vo nours)		
UNIT-II	and charge transfer complexing Equilibrium Vapor liquid Equilibrium of mixtures Vapor Liquid equilibrium (VLE) of ideal mixtures, Low pressure VLE in non-ideal mixtures, High pressure VLE using equation of states, Solubility of gas in liquid, Liquid-Liquid Equilibrium, Vapor Liquid-Liquid Equilibrium, Models for activity coefficient, UNIFAC method, UNIQUAC equation, Osmotic pressure, osmotic equilibrium					
UNIT-III	Solubility of solid Partitioning of solid	librium involving solids in liquid and supercritical fluid, Solid Liqu between two liquid phases, distribution coeff olvent due to presence of solute, freezing point of	ficient, Freezing	(08 Hours)		
UNIT-IV	Chemical Reaction Chemical equilibrium Chemical equilibrium chemical and phase	Equilibria: n in single phase system, Heterogeneous che n when several reaction occurs in single ph equilibrium. Phase rule and Duhem's theore eedom analysis for non-reacting and reacting sys	hase, Combined em for reacting	(08 Hours)		
UNIT-V	Surfaces, Interfaces Thermodynamics of energy of solids, S particle size on vapo	and Adsorption interfaces, Gibbs surface model and surface to arface effects on heterogeneous phase equilib r pressure, effect of bubble size on the boiling lubility and nucleation, effect of particle size	tension, Surface prium, effect of temperature of	(08 Hours)		
UNIT-VI	Acidity of solutions, pharmaceuticals as	acid, alkali interaction, Energy analysis ionization of chemicals, solubilties of weak act function of pH, Gibbs-Donnan equilibrium. D rgy Rate Balance, Exergetic Efficiency, Introdu	efining Energy,	(08 Hours)		
0	f thermodynamics of	abmit assignments based on different topics phase equilibria, keeping track of the re		•		

Text Books/References:

1.	J. M. Smith & H. C. Van N	J. M. Smith & H. C. Van Ness, "Introduction to Chemical Engineering Thermodynamics"			
2.	Stanley I. Sandler, "Chemical, Biochemical and Engineering Thermodynamics"				
3.	Savein Stolen, Tor Grande,	Savein Stolen, Tor Grande, Neil Allan, "Chemical Thermodynamics of Materials"			
4.	K.V.Narayanan," Chemical	Engineering Thermodynamics"			
5.	Kenneth Denbigh, "Princip	les of Chemical Equilibrium"			
6.	Y. V. C. Rao, "Chemical Engineering thermodynamics"				
7.	B. F. Dodge, "Chemical Engineering Thermodynamics"				
8.	T. E. Daubert, "Chemical Engineering Thermodynamics"				
9.	Glasstone S., "Thermodynamics for Chemists"				
10.	B. G. Kyle, "Chemical and Process Thermodynamics				
Syllabu	Syllabus for Unit Test:				
Unit Te	est -I	UNIT – I ,II,III			
Unit Te	est -II	UNIT – IV,V,VI			

FEACHIN	G SCHEME:	EXAMINATION SCHEME: CREDI		LOTTED:	
Lectures: 4 Hours/Week		End Semester Examination: 60 Marks Theory : 04			
Practical:2 Hours/Week		Unit Test: 20 Marks	TW/PR/OR: 0	1	
Fotal : 61	Hours/Week	Assignment: 10 Marks	Total credits: ()5	
		Attendance:10 Marks			
		TW :25 Marks			
		Oral:25 Marks			
		Total :150 Marks			
		Topics covered			
U NIT-I	Introduction to M Application of Industr	IultiphaseReactorEngineering:Types,ial Importance.	Classification,	(08 Hours)	
JNIT-II	Thermodynamics and kinetics:(08 HoNotable industrial heterogeneous systems and thermodynamic role. Application of equilibrium criteria to chemical reactions. The Gibbs energy change and equilibrium constant. Estimation of equilibrium constant for heterogeneous system by defining standard state of the phases involved. Determination of rate controlling step: intrinsic 			(08 Hours)	
UNIT-III	Hydrodynamic Characteristics:		(08 Hours)		
	Hydrodynamic charac	teristics of different multiphase reactors: Mecha ubble Columns, Slurry Reactors, Fluidized Beds		(00110013)	
UNIT-IV		al, system, and operating parameters on pl Quantification of phase mixing. Development of		(08 Hours)	
UNIT-V	Heat Transfer and Mass Transfer Studies : Effect of geometrical, system, and operating parameters on heat transfer coefficient in multiphase reactors. Quantification of heat transfer coefficient. Application of correlations available to different multiphase reactors. Experimental techniques used for estimation of mass transfer coefficient and selection of suitable technique for a multiphase reactor. Effect of geometrical, system, and operating parameters on mass transfer coefficient in multiphase reactors. Quantification of mass transfer coefficient.			(08 Hours)	
UNIT-VI	Application of correlations available to different multiphase reactors.Design Aspects of Multiphase Reactors:Pressure drop, Fractional phase hold- up, mass and heat transfer coefficient, extent ofwining ate			(08 Hours)	
Ferm Worl	mixing, etc.				
		bmit assignments based on different topics eeping track of the recent technological trend			

1.	L. K. Doraiswamy and M. M. Sharma, "Heterogeneous Reactions", 2 nd Edition, Volume I and II.		
2.	G. B. Tatterson, "Fluid Mixing a	nd Gas Dispersion in Stirred Reactors", 10th Edition, Academic Press,	
	London, 1994	•	
3.		Reactors", Cambridge University Press, New York, 2000.	
4.	DiazoKunji and O. Levenspiel, "Fluidization Engineering", 2 nd Edition, Butterworth Heinemann, 1991.		
5.	J. F. Devidson and Harrison, " Fluid	dization", 10 th Edition, Academic Press, London, 1994.	
	· ·		
Syllab	ous for Unit Test:		
Unit Te	Unit Test -I UNIT – I ,II,III		
Unit Te	nit Test -II UNIT – IV,V,VI		

SEMESTER-II

K10505 MODELLING AND SIMULATION OFCHEMICAL PROCESSES

TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LOTTED:
	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Practical:2 Hours/Week		Unit Test: 20 Marks	TW/PR/OR: 0	1
Total : 6Hours/Week		Assignment: 10 Marks	Total credits: ()5
		Attendance:10 Marks		
		TW :25 Marks		
		Oral:25 Marks		
		Total :150 Marks		
		— • • •		
		Topics covered		
UNIT-I	Basics of phenomer		fundamentals of	(08 Hours)
		leling, systematic approach to model building, the systematic approach to model building, the systematic syste		
		juation, equation of motion, transport equations, e		
		al kinetics, advantages and limitations of models		
		f stand-alone unit operations and unit processes,		
		gorous, lumped parameter vs. distributed parame		
	vs. dynamic, concept of degree of freedom for steady state and unsteady state			
	systems.			
UNIT-II	Empirical modelling building and analysis		(08 Hours)	
	Development of steady state and dynamic lumped and distributed parameter models			
	based on first principles, analysis of ill-conditioned systems, development of grey box			
	models, empirical model building, statistical model calibration and validation,			
		nodels; Examples: simple hydraulic tank, variable	e hydraulic tank,	
UNIT-III		ng with reaction, steam jacked vessel Is of heat-transfer equipments: shell & tube h	ant anchangers	(08 Hours)
UNI I -111				(00 110015)
	evaporators, partial condensers; Mathematical models of mass-transfer equipments: batch and continuous distillation columns, reactive distillation columns, packed			
	absorption columns; Mathematical models of reactors: batch reactors, continuous-			
	stirred tank reactors, plug-flow reactors, reactor with axial dispersion, etc.			
UNIT-IV	Basics of simulation			(08 Hours)
	Fundamentals of simulations – Ab-initio methods, basis sets, Hartree-Fock theory,			
	density functional theory, geometry optimization, vibrational analysis; elementary,			
	classical statistical mechanics, elementary concepts of temperature, ensembles and			
		n function, ensemble averaging, ergodicity; mole		
		e field, integrating algorithms, periodic box and mage forces, non bonded interactions, temperature of		
		of pure component properties, radial distrib		
	molecular dynamics		auton runeuon,	
UNIT-V	,	on and sensitivity analysis		(08 Hours)
	Parameter estimat		stical validity,	
	discrimination betwe	een two models, solution strategies for lumped pa	rameter models,	
	stiff differential equ	ations, solution methods for initial value and	boundary value	

		he problems using <i>MATLAB</i> or other chemical engineering ategies for distributed parameter models			
UNIT-VI					
		l consist of assessment of the termwork (duly certified by the tea ork/practical. The term work shall consist of the following:	cher and HOD)		
		ving numerical methods mentioned in the syllabus using MATLAN any chemical Engineering Software.	B/SCILAB, any		
	modeling and simulat	bmit assignments based on different topics in consultation wi	-		
Text Books	/References:				
		g and Simulation in Chemical Engineering", Wiley Interscience, N	Y		
		unn, "Chemical Engineering Dynamic Modeling with PC Sin			
	olishers				
	Villiam L. Luyben, "Process Modeling Simulation and Control for Chemical Engineers", McGraw Hill nternational Edition Publishing Company				
4. Hir	nmelblau D., K. B. Bisc	choff, "Process Analysis and Simulation", John Wiely & Sons			
5. Wa	yne Blackwell, "Chemi	cal Process Design on a Programmable Calculator", McGraw Hill			
6. Wa	yne Bequette, "Process	S Dynamics, Modeling, Analysis and Simulation", Prentice Hall			
		karni, P. B. Deshpande, Elements of Artificial Neural Networks	s with Selected		
		Engineering, and Chemical & Biological Sciences, 1 st Ed., Louisvi			
	Advanced Controls Inc.,				
8 C.I	D.Holland, Fundamental	ls and Modeling of Separation Processes, Prentice-Hall Internal Pul	olications		
		Process Simulation, Wiley Eastern Ltd., New Delhi (1986).			
10. M.	E.Davis, Modeling and	Numerical Methods in Chemical Engineering, John Wiley & Sons,	1984.		
11. B.C	Carnahan, H.A. Luther a	nd J.O.Wilkes, Applied Numerical Methods, McGraw-Hill, New Y	York (1969).		
12. K.	M. Hangos and I. T. Ca	meron, "Process Modeling and Model Analysis", Academic Press,	2001.		
13. Sin	giresu S. Rao, "Applie	d Numerical Methods for Engineers and Scientists" Prentice Hall			
	iver, NJ, 2001 V. F. Ramirez, "Computational Methods for Process Simulation", 2 nd ed., Butterworths, 1997				
15. Mc	odeling and analysis of dynamic systems, by C.M .Close, D.H. Fredrick and J. C. Newell, John Wiley & ons, 2002				
		uction to Chemical Engineering Computing, Wiley, 2010.			
Syllabus for	r Unit Test:				
Unit Test -I		UNIT – I ,II,III			
Unit Test -I	[UNIT – IV,V,VI			
5 mt 1 tost -1.	L	0.111 11,1,1,11			

K10506 CHEMICAL REACROR ANALYSIS AND DESIGN

	TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS AI	LOTTED:
Lectures: 4 Hours/Week			End Semester Examination: 60 Marks	Theory: 04	
Total	:4H	Iours/Week	Unit Test: 20 Marks	Total credits: ()4
			Assignment: 10 Marks		
			Attendance:10 Marks		
			Total :100 Marks		
	T	Changing 1 for the second	Topics covered		
UNIT	-1		cting the choice of the reactor, Model for batch		(08 Hours)
		· ·	nd control strategies, optimal batch operation	i time, optimal	
UNIT	п	temperature policies.	state analysis, Optimal design of reactors, Mult	tiphasa raactors:	(08 Hours)
UNII	-11	fluidized, trickle bed,		upilase reactors.	(vo nours)
UNIT	-111		thermal reactor design, the energy balance, adia	batic operation	(08 Hours)
UIII			neat exchange, equilibrium conversion, CSTR w		(00 110013)
		multiple steady states			
UNIT	-IV	· ·		hatch reactor	(08 Hours)
01111	-1 4		e non isothermal reactor design. Energy balance on batch reactor, eration of batch reactor, Batch reactor with interrupted isothermal (08 Hours)		
			h reactors with a heat exchanger, Unsteady oper		
I .		Unsteady operation of			
UNIT	NIT-V Design of fixed bed catalytic reactors, isothermal ,adiabatic ,non isothermal				
OT ALL.	•	Design of fixed bed	catalytic reactors, isothermal, adiadatic, non isothe	ermal	(08 Hours)
		e			
		Non ideal flow in re	actors, Estimation of dispersion/back mixing, do		(08 Hours) (08 Hours)
		Non ideal flow in re			
UNIT	-VI	Non ideal flow in re reactors with non ide	actors, Estimation of dispersion/back mixing, do	esign aspects of	(08 Hours)
UNIT. Assign	-VI nment:	Non ideal flow in re reactors with non ide Each student will su	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors.	esign aspects of	(08 Hours) th faculty, in
UNIT Assign	-VI nment: ea of c	Non ideal flow in re reactors with non ide Each student will su chemical reactor anal	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors.	esign aspects of	(08 Hours) th faculty, in
UNIT Assign the are develo	-VI mment: ea of c opmen	Non ideal flow in re reactors with non ide Each student will su chemical reactor anal tts.	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors.	esign aspects of	(08 Hours) th faculty, in
UNIT Assign the are develo Text B	-VI mment: ea of c opmen Books/	Non ideal flow in re reactors with non ide Each student will su chemical reactor anal its. References:	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors. Ibmit assignments based on different topics in ysis and design, keeping track of the recent te	esign aspects of n consultation wi echnological tren	(08 Hours) th faculty, in ds and
UNIT Assign the are develo Text B 1.	-VI mment: ea of c opmen 300ks/ Fror	Non ideal flow in re reactors with non ide Each student will such themical reactor anal tts. References: ment G. F. and K. B. B	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors. Ibmit assignments based on different topics in ysis and design, keeping track of the recent te ischoff, " Chemical Reactor Analysis and Design	esign aspects of n consultation wi echnological tren ", John Wiley & S	(08 Hours) th faculty, in ds and
UNIT- Assign the arc develo Text B 1. 2.	-VI mment: ea of c opmen Books/ Fror Fog	Non ideal flow in re reactors with non ide Each student will such themical reactor anal tts. References: ment G. F. and K. B. B ler H. S., "Elements of	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors. Ibmit assignments based on different topics in ysis and design, keeping track of the recent te ischoff, " Chemical Reactor Analysis and Design 'Chemical Reaction Engineering'', Prentice - Hall	esign aspects of n consultation wi echnological tren ", John Wiley & S	(08 Hours) th faculty, in ds and
UNIT Assign the are develo Text B 1.	-VI mment: ea of c opmen Books/ Fror Fog	Non ideal flow in re reactors with non ide Each student will such themical reactor anal tts. References: ment G. F. and K. B. B ler H. S., "Elements of	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors. Ibmit assignments based on different topics in ysis and design, keeping track of the recent te ischoff, " Chemical Reactor Analysis and Design	esign aspects of n consultation wi echnological tren ", John Wiley & S	(08 Hours) th faculty, in ds and
UNIT- Assign the are develo Text B 1. 2.	-VI mment: ea of c opmen Books/ Fror Fog Smi Den	Non ideal flow in re reactors with non ide Each student will such themical reactor anal tts. References: ment G. F. and K. B. B ler H. S., "Elements of th J. M., " Chemical En- bigh K. G. and J. C. T	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors. Ibmit assignments based on different topics in ysis and design, keeping track of the recent te ischoff, " Chemical Reactor Analysis and Design 'Chemical Reaction Engineering'', Prentice - Hall	esign aspects of n consultation wi echnological tren ", John Wiley & S	(08 Hours) th faculty, in ds and Sons
UNIT- Assign the are develo Text B 1. 2. 3. 4.	-VI mment: ea of c opmen Books/ Fror Fog Smi Den Univ	Non ideal flow in re reactors with non ide Each student will such themical reactor anal tts. References: ment G. F. and K. B. B ler H. S., "Elements of th J. M., " Chemical En- bigh K. G. and J. C. T versity Press.	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors. Ibmit assignments based on different topics in ysis and design, keeping track of the recent te ischoff, "Chemical Reactor Analysis and Design "Chemical Reaction Engineering", Prentice - Hall ngineering Kinetics ", McGraw Hill, 1981 "urner, "Chemical Reactor and Theory – An Intr	esign aspects of n consultation wi echnological tren ", John Wiley & S	(08 Hours) th faculty, in ds and Sons
UNIT- Assign the are develo Text B 1. 2. 3.	-VI mment: ea of c opmen Books/ Fror Fog Smi Den Univ	Non ideal flow in re reactors with non ide Each student will such themical reactor anal tts. References: ment G. F. and K. B. B ler H. S., "Elements of th J. M., " Chemical En- bigh K. G. and J. C. T versity Press.	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors. Ibmit assignments based on different topics in ysis and design, keeping track of the recent to ischoff, "Chemical Reactor Analysis and Design Chemical Reaction Engineering", Prentice - Hall ngineering Kinetics ", McGraw Hill, 1981	esign aspects of n consultation wi echnological tren ", John Wiley & S	(08 Hours) th faculty, in ds and Sons
UNIT- Assign the arc develo Text B 1. 2. 3. 4. 5.	-VI mment: ea of c opmen Books/ Fror Fog Smi Den Uni ¹ Bruc	Non ideal flow in re reactors with non ide Each student will such emical reactor analasts. References: ment G. F. and K. B. B ler H. S., "Elements of th J. M., " Chemical En bigh K. G. and J. C. T versity Press. ce Nauman, " Chemica	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors. Ibmit assignments based on different topics in ysis and design, keeping track of the recent te ischoff, "Chemical Reactor Analysis and Design "Chemical Reaction Engineering", Prentice - Hall ngineering Kinetics ", McGraw Hill, 1981 "urner, "Chemical Reactor and Theory – An Intr	esign aspects of n consultation wi echnological tren ", John Wiley & S	(08 Hours) th faculty, in ds and Sons
UNIT- Assign the arc develo Text B 1. 2. 3. 4. 5. Syllab	-VI mment: ea of c opmen Books/ Fror Fog Smi Den Univ Bruc	Non ideal flow in re reactors with non ide Each student will such themical reactor anal tts. References: ment G. F. and K. B. B ler H. S., "Elements of th J. M., " Chemical En- bigh K. G. and J. C. T versity Press.	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors. Ibmit assignments based on different topics in ysis and design, keeping track of the recent to ischoff, "Chemical Reactor Analysis and Design 'Chemical Reaction Engineering'', Prentice - Hall ngineering Kinetics ", McGraw Hill, 1981 Curner, "Chemical Reactor and Theory – An Intr I Reactor Design'', John Wiley & Sons.	esign aspects of n consultation wi echnological tren ", John Wiley & S	(08 Hours) th faculty, in ds and Sons
UNIT- Assign the arc develo Text B 1. 2. 3. 4. 5.	-VI mment: ea of c opmen Books/ Fror Fog Smi Den Univ Bruc Dus for 'est -I	Non ideal flow in re reactors with non ide Each student will such emical reactor analasts. References: ment G. F. and K. B. B ler H. S., "Elements of th J. M., " Chemical En bigh K. G. and J. C. T versity Press. ce Nauman, " Chemica	eactors, Estimation of dispersion/back mixing, de al flow, micro and meso mixing in reactors. Ibmit assignments based on different topics in ysis and design, keeping track of the recent te ischoff, "Chemical Reactor Analysis and Design "Chemical Reaction Engineering", Prentice - Hall ngineering Kinetics ", McGraw Hill, 1981 "urner, "Chemical Reactor and Theory – An Intr	esign aspects of n consultation wi echnological tren ", John Wiley & S	(08 Hours) th faculty, in ds and Sons

	K10507 SYNT	HESIS AND DESIGN OF CHEMICAL P	PROCESSES	
TEACHIN	IG SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LOTTED:
	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Total : 4Hours/Week		Unit Test: 20 Marks	Total credits: ()4
		Assignment: 10 Marks		
		Attendance:10 Marks		
		Total :100 Marks		
			ł	
	_	Topics covered		
UNIT-I	Significance of SDCP in chemical process industry, Hierarchy of chemical process design: Hierarchy, approach to process design, performance. Preliminary Process Synthesis, Synthesis of reaction: Function of process recycle, vapor cycles and		(08 Hours)	
UNIT-II		iquid cycles, batch processes, process yield eaction path, types of reaction systems, reactor	r Continuous or	(08 Hours)
01111-11	Batch Processing, C Tree, Heuristics, Algo	hemical state, Process Operations, Synthesis Sorithmic Methods.		(vo 110urs)
UNIT-III	Equilibrium limitatio	cycle material balances, Reactor heat effects, ns, Reactor design, Separation system, vapor r ystem, Distillation column sequencing, azeo eterogeneous Systems.		
UNIT-IV	 Heat exchanger networks Pinch Methodology: Problem representation, temperature enthalpy diagram, simple match matrix. Heat content diagram, Temperature interval diagram. Pinch Design and Optimization: Networks for maximum energy recovery, Pinch design method, Flexibility criteria of the pinch, case studies 			
UNIT-V	UNIT-V Industrial Safety and risk management Hazards: Chemical hazards classification. site selection and plant layout. Indulighting and ventilation. Occupational diseases and prevention methods. Instrumentation and control for safe operation. Personal prot equipments. Management and Risk Analysis: Case studies pertaining to che industries. Legislations and economics: Factory Act. Environmental Act. Prov		onal protective ing to chemical	(08 Hours)
UNIT-VI	under various acts. I Introduction to scale-up methods, pilot plants, models and principles of similarity. Industrial applications. Computer–Aided Design application in chemical process industries, complete plant simulation.			(08 Hours)
	f synthesis and design of	bmit assignments based on different topics in of chemical processes, keeping track of the re		
Text Book	s/References:			
		rocess Design", McGraw Hill		
		Analysis and Synthesis of Chemical Process Sys	stem", Elsevier. Ai	nsterdam
	· · ·	ocess Development – Part I'', Robert K. Krieger		
	-	otual Design of Chemical Processes" McGraw H	C 1	,
т . Ja	ines wi.Douglas, Collee	Suar Design of Chemical Processes Weoldw II		

-	Warren D.Seider, J.D.Seader, Daniel R. Lewin, "Process Design Principles Synthesis , Analysis and Evaluation," John Wiley & Sons Inc.			
Syllabus for Unit Test:				
Unit Test -I	UNIT – I ,II,III			
Unit Test -II	UNIT – IV,V,VI			

K10508 ADVANCED MASS TRANSFER

<u>FEACHIN</u>	G SCHEME:	EXAMINATION SCHEME:	CREDITS A	LLOTTED:
Lectures : 4	Hours/Week	End Semester Examination: 60 Marks	Theory : 04	
Practical : 2	2 Hour /Week	Unit Test: 20 Marks	Practical: 01	
Total : 6 Hours/Week		Assignment: 10 Marks	Total credits:	05
		Attendance: 10 Marks		
		TW :25 Marks		
		Oral:25 Marks		
		Total :150 Marks		
		Tanias asyand	·	
UNIT-I	Diffusion	Topics covered		(08 Hours)
UI NII-I	Diffusion: Steady State diffusion with heterogeneous chemical reaction, Steady state diffusion accompanied by homogeneous Chemical reaction. Unsteady state molecular diffusion in isotropic media, unsteady state diffusion for typical cases of mass transfer in infinite, semi-infinite and finite plane media and in spherical and cylindrical media.			
J NIT-II	Ionic Separations : Controlling factors, applications, Theory mechanism and equipments for electrophoresis, dielectrophoresis and electro dialysis, commercial applications and design considerations.		(08 Hours)	
JNIT-III	Adsorption Techniqu			(08 Hours)
	Mechanism, Thermal-Swing Adsorption, Pressure-Swing Adsorption, Continuous, Countercurrent Adsorption Systems, Slurry Adsorption, Fixed-Bed Adsorption (Percolation), Simulated-Moving-Bed Systems, affinity chromatography and immuno chromatography, types of equipment and commercial processes, recent advances and process economics.			
JNIT-IV	Multicomponent Dis	tillation:		(08 Hours)
	Tray by Tray calculation, feed plate location, operating reflux and plates, recent advances in column design and operation-Petlyuk, divided wall, kaibel, pre fractionators, post fractinator. Azeotropic distillation, Extractive distillation, Molecular distillation, Reactive distillation.		````	
UNIT-V	Membrane Separation			(08 Hours)
	Membrane Separations : Classification of membrane processes; Liquid permeation membrane processes or dialysis – Series resistance in membrane processes, Dialysis processes, Types of equipment for dialysis; Gas permeation membrane processes – Types of membranes and permeability for separation of gases, Types of equipment for gas permeation membrane processes (flat membranes, spiral-wound membranes, hollow-fibre membranes); Types of flow in gas permeation; Complete-mixing model, cross-flow model and countercurrent flow model for gas separation by membranes; Effect of processing variables on gas separation by membranes.			
UNIT-VI	Novel Separation Te			(08 Hours)
	Supercritical fluid ext	raction, Reactive extraction, Zone melting, separation based on surface science, adductive cryst		

Oral examination will consist of assessment of the term work (duly certified by the teacher and HOD) and oral exam based on the term work/practical. The term work shall consist of the following.

Seminar presented and duly report prepared on any topic given from syllabus.

Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of advanced mass transfer, keeping track of the recent technological trends and developments.

Text B	Text Books/References:				
1.	Phillip C. Wankat, Separation Process Engineering (2nd Edition), Printice Hall,2007				
2.	Marcel Mulder, Introduction	on to Membrane Science and Technology, Marcel Dekker, 1992.			
3.	Rousseau, R. W., Handboo	k of Separation Process Technology, John Wiley, New York, 2009.			
4.	Humphrey, J and G. Keller	r, Separation Process Technology, McGraw-Hill, 1997			
5.	King, C. J., Separation Pro	cesses, Tata McGraw Hill Co., Ltd., 1982.			
6.	T.K.Sherwood, R.L.Pigford and C.R.Wilke, Mass Transfer, McGraw-Hill, New York (1975).				
7.	R.E.Treybal, Mass-Transfer Operations, McGraw-Hill, New York (1980).				
8.	Anthony L Hines, Robert N Maddox, Mass Transfer Fundamentals and Applications.				
9.	Sherwood, T. K., Pigford, R. L. & Wilke, C. R, Mass Transfer Mc Graw Hill, 1975				
10.	Skelland, A. H. P. : Diffusional Mass Transfer, John Wiley & Sons, 1974.				
11.	Crank J, The Mathematics	of Diffusion, Oxford University Press London 1956			
\	- ·				
Syllab	Syllabus for Unit Test:				
Unit T	est -I	UNIT – I ,II,III			
Unit T	est -II	UNIT – IV,V,VI			

SEM-III

TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LOTTED:
	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Practical:2 Hours/Week		Unit Test: 20 Marks	TW/PR/OR: 01	
Total : 6Hours/Week		Assignment: 10 Marks	Total credits: ()5
		Attendance: 10 Marks		
		TW :25 Marks		
		Oral:25 Marks		
		Total :150 Marks		
		Topics covered		
UNIT-I	Response of Control	Loop Components and Transfer Functions:		(08 Hours)
		nost useful forcing functions, step function, sin	usoidal function	(00 110015)
		, respective responses of the forcing functions		
	more complex system			
UNIT-II	Types of Controls:			(08 Hours)
		l: Advantages and drawbacks, typical exam	ples. Feedback	× /
		nd drawbacks, typical examples.	•	
UNIT-III		ntial Control Systems:		(08 Hours)
	Adaptive - Feed forwa	rd, feedback		
	Inferential - Need for	a model Examples for illustration.		
UNIT-IV	Besnanse Analysis:			(08 Hours)
	Response Analysis: Stability and Tasting Stap response analysis Frequency response analysis Rode			(00 110015)
	Stability and Testing Step response analysis Frequency response analysis Bode criterion, Nyquist Diagram, Root-Locus, Routh-Hertzwitz criterion. Pulse function			
	Laplace transforms, transfer function of various system.			
UNIT-V	-	Dynamics of Various Systems:		
	Dead time, distance-velocity lag, inverse response systems, dynamic analysis,			(08 Hours)
		tics, Distributed parameter systems.		
UNIT-VI		r various unit operations and processes:		(08 Hours)
		Absorption column, Stirred tanks. Processes:	Process Design.	(00 110 01 5)
	Product quality control. Computer control: Direct Digital Control (DDC), Supervisory			
		omic justification for supervisory digital control.		
Term Woi	e e	rk/practical. The term work shall consist of the		
		1	e	
• Abi	lity of the student to e	xplain the theory and related course material		
	•	es are now extensively used in industry. The		monstrate the
		tility citing at least 4 chemical industries.	student should de	
		nical industry need careful monitoring.		
		ribe the type of maintenance for controllers.		
- 500	units should briefly dese	the type of manifemance for controllers.		
Assignmer	nt• Fach student will er	bmit assignments based on different topics	in consultation w	vith faculty in

Text B	Text Books/References:				
1.	George Stephanopoulos, "Chemical Process Control - An Introduction to Theory and				
	Practice"				
2.	Coulson and Richardson, "Chemical Engineering Vol 3"				
Syllabu	Syllabus for Unit Test:				
Unit Te	Unit Test -I UNIT – I ,II,III				
Unit Te	Unit Test -II UNIT – IV, V, VI				

K10601 ELECTIVE – I : NON CONVENTIONAL ENERGY SOURCES

TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS A	LLOTTED:
Lectures: 4	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Practical:2 H	Hours/Week	Unit Test: 20 Marks	TW/PR/OR: 0	1
Total : 6	Hours/Week	Assignment: 10 Marks	Total credits:)5
		Attendance:10 Marks		
		TW :25 Marks		
		Oral:25 Marks		
		Total :150 Marks		
		Topics covered		
UNIT-I	Renewable Sources	of Energy:		
	Solar energy: Therm	nodynamic and heat transfer aspects of so	olar collection;	(08 Hours)
	Energy storage; Sola	r distillation; Solar drying; Wind energy; Ti	idal, Wave and	(00 110015)
	ocean thermal energy; Geothermal energy.			
UNIT-II	Fuel Cells:			
	Introduction, Principles; Types of fuel cells; phosphoric acid, molten salt,		$(00 \text{ H}_{\text{over}})$	
	solid oxide and other types of fuel cells; Anodes and cathodes; Fuel cells as			(08 Hours)
	alternative energy source.			
UNIT-III	Biomass and biofue	ls:		
	Introduction, Biofuel classification; Biomass production for energy farming;			
	Direct combustion for heat; Pyrolysis (destructive distillation);		(08 Hours)	
	Thermochemical processes; Alcoholic fermentation; Anaerobic digestion for			
	biogas; Vegetable oils and biodiesel; Economics of bio-mass energy systems.			
UNIT-IV	Hydro-power:			
	Introduction, Principles, Assessing the resource for small installations, An		stallations, An	
	impulse turbine, Reaction turbines, Hydroelectric systems, The hydraulic ram		hydraulic ram	(08 Hours)
	pump, Social and environmental aspects		2	
UNIT-V	Tidal power:	£		
	Introduction, The cause of tides, Enhancement of tides, Tidal current/stream		current/stream	
	-	ower, World range power sites 447		(08 Hours)
		gy conversion (OTEC):		

	Introduction, Principles, Heat exchangers, Pumping requirements, Practical considerations.	
UNIT-VI	Utilization of Wastes: Utilization of fly ash, blast furnace slag in cement and concrete, Wastes and residues	(08 Hours)

Term Work: The term work shall consist of the following.

Research survey, literature review and analysis, synthesis, design and development, experimental work, testing on the product or system, generation of new ideas and concept, modification in the existing process/system, development of computer programs, solutions, modeling and simulation related to the subject. The student is required to choose the topic in consultation with the subject teacher. The student is expected to submit a report on the work carried out throughout the semester.

Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of non conventional energy sources, keeping track of the recent technological trends and developments

Text B	Text Books/References:			
1.	John Twidell & Tony Weir	Renewable Energy Resources, Second edition, Taylor & Francis, 2006		
2.	Douglas C., Energy Technology Handbook, Tata McGraw Hill Publishers			
3.	Rao C. S., Environmental Pollution Control Engineering, Wiley Eastern			
4.	Majumdar B., A Textbook	of Energy Technology, APH Publications		
5.	J. T. Mcmullan, R. Morgan and R. B. Murray, Energy Resources and Supply, John Wiley & Sons, London, 1976			
6.	K.C. Khandelwal, S.S.Mah	di, Biogas Technology, Tata MGH		
7.	G.D. Rai, Solar Energy Uti	lization, Khanna Publishers, Delhi		
8.	A.W. Culp, Principles of er	nergy conservation, Tata MGH		
Syllabu	ıs for Unit Test:			
Unit Te	est -I	UNIT – I ,II,III		
Unit Te	est -II	UNIT – IV,V,VI		

K10601 ELECTIVE I:INDUSTRIAL WASTE WATER TREATMENT

TEACHIN	<u>G SCHEME:</u>	EXAMINATION SCHEME:	CREDITS AI	LOTTED:
Lectures: 4	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Practical:2	Hours/Week	Unit Test: 20 Marks	TW/PR/OR: 0	1
Total : 6Hours/Week		Assignment: 10 Marks	Total credits: ()5
		Attendance:10 Marks		
		TW :25 Marks		
		Oral:25 Marks		
		Total :150 Marks		
		Topics covered		
UNIT-I		Industrial waste water, Physical, Chemica		(08 Hours)
		rial Waste Water. Measurement of pollut	ting strength of	
	Ind.Waste water (physica)			
UNIT-II	· 1	Sedimentation & Design of Settling Chambe	ers. Filtration &	
	Design of Filters. Coagulation, Flocculatores, Froth Flotation		(08 Hours)	
UNIT-III	Conventional Waste Wa	ter Treatment:		
	Primary Treatment (Physi	cal).Design Principles of Grit chambers & so	creens.	
		condary treatments (Biological), Kinetics of		
	utilization, Design Principles of A.S.P. Trickling Filters, oxidation ponds, stabilization			
	ponds, Aerobic, anaerobic			(08 Hours)
UNIT-IV	0	posal: Anaerobic digestion, Aerobic Digesti	ion, Sludge	
	disposal, composting			(08 Hours)
UNIT-V	Advanced Waste Water	Treatment:-		(08 Hours)
	Carbon adsorption, Ion exchange, membrane processes. Nitrogen removal,			
	Phosphorous removal, Chemical oxidation, Recovery of materials from process			
	effluents			
UNIT-VI	Solid Waste Managemen			(08 Hours)
		aste collection & transport, Solid Waste		
		id waste. Hazardous waste management & H		
	Types of hazardous waste	, health Effects, Treatment methods & Final	disposal	
	·k: The term work shall con			

Term Work: The term work shall consist of the following.

Research survey, literature review and analysis, synthesis, design and development, experimental work, testing on the product or system, generation of new ideas and concept, modification in the existing process/system, development of computer programs, solutions, modeling and simulation related to the subject. The student is required to choose the topic in consultation with the subject teacher. The student is expected to submit a report on the work carried out throughout the semester.

Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of industrial waste water treatment, keeping track of the recent technological trends and developments

Text Books/References:				
1.	Metcalf & Eddy, "Waste Water Engineering" Treatment & Reuse, Tata Mc Graw-Hill. Fourth Edition 2003			
2.	C.S.Rao., "Environmental Pollution Control Engineering", Wiley Eastern Ltd. New Age			
	International, Second print	1994		
3.	A. P. Sincero, G. A. Sincero, "Environmental Engg.", A design approach, Prentice Hall of India Pvt.			
	Ltd. New Delhi 1996			
Syllab	us for Unit Test:			
Unit Test -I		UNIT – I ,II,III		
Unit T	Unit Test -II UNIT – IV,V,VI			

	K10601 ELECTI	VE I: HETEROGENEOUS CATALY	SIS	
TEACHIN	<u>G SCHEME:</u>	EXAMINATION SCHEME:	CREDITS A	LLOTTED:
Lectures: 4 Hours/Week		End Semester Examination: 60 Marks	Theory: 04	
Practical:2	Hours/Week	Unit Test: 20 Marks	TW/PR/OR: 01	
Total : 6	Hours/Week	Assignment: 10 Marks	Total credits:	05
		Attendance:10 Marks		
		TW :25 Marks		
		Oral:25 Marks		
		Total :150 Marks		
		Topics covered		
UNIT-I	Adsorption, Desorption:			(08 Hours)
	Definition, rates of adsor	ption and desorption, surface areas for phys	sical adsorption.	
	Experimental aspects of a	dsorption and allied phenomena on catalyst s	urfaces	
UNIT-II	Significance of Pore Stru	icture and Surface Area in Heterogeneous	Catalysis:	
	Importance of pore struc	ture and surface area, experimental method	ds to determine	
	· ·	ascertaining pore volume and diameter .K		
		on by gas adsorption, pressure porosim	•	
	measurement. Pore struc		ieter, density	
		shape of capillaries, surface area from h		
		g pore structures. Reaction rates in pores	•	
l		profiles, reaction rates, pressure and temper	rature gradients,	
	catalyst deactivation			(08 Hours)

UNIT-III	Role of Lattice Imperfections in Heterogeneous Catalysis:		
	Classification of lattice imperfections, role of point dislocations and point defects,		
	lattice imperfections and polymerization catalysts, role of geometric and		
	electronic factors in catalytic activity.		
		(08 Hours)	
UNIT-IV	Dynamics of Selective and Poly-functional Catalysis:		
	Catalyst selectivity, selective formation of intermediate products, effect of pore size on electivity, mass transport of intermediate product in non-trivial poly-step reactions, selectivity of poly-functional catalysts Zeolites in catalysis: Structural aspects and synthesis of zeolites, modification of zeolites, diffusion in zeolites, applications.	(08 Hours)	
UNIT-V	Fischer-Tropsch synthesis: Synthesis and Decomposition of Ammonia	(08 Hours)	
	Catalyst cracking: catalyst composition and chemical properties, mechanism of cracking reactions. Catalysis of electrode reactions. Kinetics of catalytic reactions: Rate of chemical reaction, overall reaction rate, mass transfer through gas phase, mass transfer in pores.	(00 110013)	
UNIT-VI	Mass and heat transfer in solid catalyst beds.	(08 Hours)	
	Design calculations: Isothermal conditions, adiabatic conditions, non-adiabatic conditions. Thermal selectivity of packed bed reactors. Fluidized bed reactors. Optimum design: Continuous variation of parameter along the reaction path, temperature profiles for reversible and consecutive reactions, optimum catalyst concentration in bi-functional catalyst systems		
Term Wor	k: The term work shall consist of the following.		
product or sy computer pro	rvey, literature review and analysis, synthesis, design and development, experimental wor ystem, generation of new ideas and concept, modification in the existing process/system, ograms, solutions, modeling and simulation related to the subject. The student is require sultation with the subject teacher. The student is expected to submit a report on the v he semester.	development of ed to choose the	
-	: Each student will submit assignments based on different topics in consultation we heterogeneous catalysis, keeping track of the recent technological trends and devel	•	
Text Books/	/References:		
	omas J. M., Thomas W. J., "Introduction to The Principles of Heterogeneous catalysis", Ad	cademic Press	
1	rivastav R. D., "Heterogeneous catalytic Science", CRC Press		
2. Sriv	astav R. D., Heterogeneous catalytic Science, CRC riess		
	omas S. J., Webb G., "Heterogeneous Catalysis", Oliver & Boyd Ltd.		
3. Tho	omas S. J., Webb G., "Heterogeneous Catalysis", Oliver & Boyd Ltd.		
	omas S. J., Webb G., "Heterogeneous Catalysis", Oliver & Boyd Ltd.		

TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS A	LLOTTED:	
	Hours/Week	End Semester Examination: 60 Marks	Theory: 04		
	Hours/Week	Unit Test: 20 Marks	TW/PR/OR: 0)1	
Total : 6	Hours/Week	Assignment: 10 Marks	Total credits:	05	
		Attendance:10 Marks			
		TW :25 Marks			
		Oral:25 Marks			
		Total :150 Marks			
		Topics covered			
UNIT-I	Bimetallic Catalysts			(08 Hours)	
		method of preparation and characterization, cat			
		. Supported bimetallic catalyst, chemical nature,			
		mity of co clustering, structure, surface compo	osition, catalytic		
	properties.				
UNIT-II	Perovskite Related Oxides:		(08 Hours)		
		Solid state properties, Zeolite, crystal structure, non-stoichiometry, magnetic and			
		ferro electric and acoustic properties, appli			
		chemistry and catalytic properties of oxides with scheelite structure, crystal chemistry,			
	olefin oxidation, and mechanism. Catalytic properties of synthetic layered silicates				
			layered silicates		
	and alumino silicate,	synthetic mica-montmorillonite and nickel redu	layered silicates		
	and alumino silicate, metalsilicate catalyst.	synthetic mica-montmorillonite and nickel redu	layered silicates	(00 11)	
UNIT-III	and alumino silicate, metalsilicate catalyst. Biological Catalyst:	synthetic mica-montmorillonite and nickel redu	layered silicates acibility, layered	(08 Hours)	
UNIT-III	 and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives 	synthetic mica-montmorillonite and nickel reduces for using enzymes, methodology,chemica	layered silicates acibility, layered	(08 Hours)	
UNIT-III	 and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives 	synthetic mica-montmorillonite and nickel redu	layered silicates acibility, layered	(08 Hours)	
UNIT-III	and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives properties, activity, p	synthetic mica-montmorillonite and nickel reduces for using enzymes, methodology,chemica	layered silicates acibility, layered	(08 Hours)	
	and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives properties, activity, p	synthetic mica-montmorillonite and nickel redused for using enzymes, methodology,chemica H-activity behavior, stability, application.	layered silicates acibility, layered		
	and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives properties, activity, p Catalyst Design: Optimization of catal	synthetic mica-montmorillonite and nickel redu- s for using enzymes, methodology,chemica H-activity behavior, stability, application. yst distribution in a single pellet, the case of sin	layered silicates acibility, layered and physical gle and multiple		
	 and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives properties, activity, p Catalyst Design: Optimization of catal reaction, isothermal a 	synthetic mica-montmorillonite and nickel redu- s for using enzymes, methodology,chemica H-activity behavior, stability, application. yst distribution in a single pellet, the case of sin and non-isothermal conditions, complex reaction	layered silicates acibility, layered and physical gle and multiple a system, factors		
UNIT-IV	and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives properties, activity, p Catalyst Design: Optimization of catal reaction, isothermal a affecting catalytic dis	synthetic mica-montmorillonite and nickel redu- s for using enzymes, methodology,chemica H-activity behavior, stability, application. yst distribution in a single pellet, the case of sin and non-isothermal conditions, complex reaction persion, optimal distribution of catalytic loading	layered silicates acibility, layered and physical gle and multiple a system, factors	(08 Hours)	
UNIT-IV	and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives properties, activity, p Catalyst Design: Optimization of catal reaction, isothermal a affecting catalytic dis Optimization of Cat	synthetic mica-montmorillonite and nickel redu- s for using enzymes, methodology,chemica H-activity behavior, stability, application. yst distribution in a single pellet, the case of sin and non-isothermal conditions, complex reaction persion, optimal distribution of catalytic loading alyst Distribution in a Reactor:	layered silicates acibility, layered and physical gle and multiple a system, factors	(08 Hours)	
UNIT-IV	 and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives properties, activity, p Catalyst Design: Optimization of catal reaction, isothermal a affecting catalytic dis Optimization of Cat Single reaction and 	synthetic mica-montmorillonite and nickel redu- s for using enzymes, methodology,chemica H-activity behavior, stability, application. yst distribution in a single pellet, the case of sin and non-isothermal conditions, complex reaction persion, optimal distribution of catalytic loading alyst Distribution in a Reactor: multiple reaction, isothermal and non-isother	layered silicates acibility, layered and physical gle and multiple a system, factors	(08 Hours)	
UNIT-IV UNIT-V	 and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives properties, activity, p Catalyst Design: Optimization of catal reaction, isothermal a affecting catalytic dis Optimization of Cat Single reaction and Catalytic deactivation 	synthetic mica-montmorillonite and nickel redu- s for using enzymes, methodology,chemica H-activity behavior, stability, application. yst distribution in a single pellet, the case of sin and non-isothermal conditions, complex reaction persion, optimal distribution of catalytic loading alyst Distribution in a Reactor: multiple reaction, isothermal and non-isother a, non-selective and selective poisoning	layered silicates acibility, layered and physical gle and multiple a system, factors	(08 Hours) (08 Hours)	
UNIT-IV UNIT-V	 and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives properties, activity, p Catalyst Design: Optimization of catal reaction, isothermal a affecting catalytic dis Optimization of Cat Single reaction and Catalytic deactivation Membrane Reactor: 	synthetic mica-montmorillonite and nickel redu- s for using enzymes, methodology,chemica H-activity behavior, stability, application. yst distribution in a single pellet, the case of sin and non-isothermal conditions, complex reaction persion, optimal distribution of catalytic loading alyst Distribution in a Reactor: multiple reaction, isothermal and non-isother a, non-selective and selective poisoning	layered silicates acibility, layered and physical gle and multiple a system, factors mal conditions.	(08 Hours) (08 Hours)	
UNIT-III UNIT-IV UNIT-V UNIT-VI	 and alumino silicate, metalsilicate catalyst. Biological Catalyst: Enzymes, incentives properties, activity, p Catalyst Design: Optimization of catal reaction, isothermal a affecting catalytic dis Optimization of Cat Single reaction and Catalytic deactivation Membrane Reactors: Membrane reactor 	synthetic mica-montmorillonite and nickel redu- s for using enzymes, methodology,chemica H-activity behavior, stability, application. yst distribution in a single pellet, the case of sin and non-isothermal conditions, complex reaction persion, optimal distribution of catalytic loading alyst Distribution in a Reactor: multiple reaction, isothermal and non-isother a, non-selective and selective poisoning	layered silicates acibility, layered and physical gle and multiple a system, factors mal conditions.	(08 Hours) (08 Hours) (08 Hours) (08 Hours)	

Term Work: The term work shall consist of the following.

Research survey, literature review and analysis, synthesis, design and development, experimental work, testing on the product or system, generation of new ideas and concept, modification in the existing process/system, development of computer programs, solutions, modeling and simulation related to the subject. The student is required to choose the topic in consultation with the subject teacher. The student is expected to submit a report on the work carried out throughout the semester.

Assignment: Each student will submit assignments based on different topics in consultation with faculty, in

the area of catalyst materials, keeping track of the recent technological trends and developments.			
Text Books/References:			
1.	Burton J. J. and Garton R. L., "Advanced materials in catalysis", Academic press, London, 1977. Ÿ		
2.	Morbidelli M., Gavriilidis A. and Varma A., "Catalyst design: Optimal distribution of catalyst in pellets, reactorts and membrane", Cambridge university press, Cambridge, 2001.		
Syllab	us for Unit Test:		
Unit Test -I		UNIT – I ,II,III	
Unit Test -II UNIT – IV, V, VI		UNIT – IV,V,VI	

	EL	ECTIVE II: MEMBRANE SEPERATION		
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS A	LLOTTED:
Lectures: 4 Hours/Week		End Semester Examination: 60 Marks	Theory: 04	
Practical:2 Hours/Week		Unit Test: 20 Marks	TW/PR/OR: 0	01
Total : 6	Hours/Week	Assignment: 10 Marks	Total credits:	05
		Attendance:10 Marks		
		TW :25 Marks		
		Oral:25 Marks		
		Total :150 Marks		
		Topics covered		
UNIT-I	Introduction	-		(08 Hours)
	Separation Processes	, Introduction to membrane processes,	Definition of	
	Membrane Merits of	the Processes. Classification of the memb	brane separation	
	process.		1	
UNIT-II	Materials & Materia	ls Properties		(08 Hours)
		s, Molecular weight, Porous & Poro	ous membrane,	
	•	& Mechanical Properties of Inorgan		
		s. Retention & rejection co-efficient. Fact		

r		
	separation processes. Effect of polymeric structure on Tg Glass transition	
	temperature depression.	
UNIT-III	Preparation of Synthetic Membranes	(08 Hours)
	Phase inversion membranes, Preparation by evaporation, Precipitation from	
	the vapour phase. Precipitation by controlled evaporation, Thermal &	
	immersion precipitation. Flat membranes, Tubular membranes, Zeolite	
	membranes, Dense membrane. Preparation Technique for Composite	
	Membrane, Inorganic Membranes	
UNIT-IV	Characteristics of porous membrane, Bubble Point Method, Mercury intrusion	(08 Hours)
	method, Permeability Method, Ultrafiltration, Gas-adsorption desorption,	
	Characterisation of ionic membranes, characterisation of nonporous	
	membrane.	
UNIT-V	Transport in membrane, Knudsen flow, Friction Model, Transport through	(08 Hours)
	non-porous membrane. Determination of diffusion co-efficient & solubility co-	`
	efficient. Transport in ion exchange membranes.	
UNIT-VI	Membrane Processes, M.F, U.F, R.O, Nano filtration Dialysis, Electrodialysis,	(08 Hours)
	Piezodialysis, Diffusion Dialysis, Membrane reactors & membrane	
	bioreactors, Polarization & Fouling Phenomena in Membranes, C.P in electro	
	dialysis, Temperature Polarization, Membrane Fouling, Method to reduce	
	Fouling.	
Term Worl	x: The term work shall consist of the following.	
Research su	rvey, literature review and analysis, synthesis, design and development, exper-	rimental work,
testing on	the product or system, generation of new ideas and concept, modification i	n the existing
process/syst	em, development of computer programs, solutions, modeling and simulation	related to the
subject. The	e student is required to choose the topic in consultation with the subject teacher.	The student is
expected to	submit a report on the work carried out throughout the semester.	

Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of membrane separation, keeping track of the recent technological trends and developments.

Text Books/References:			
1.	Osada Yoshohito, Nakagawa T., "Membrane Science and Technology", Marcel Dekker Inc.		
2.	Mulder, "Basic Principles Membrane Technology", Kluwer Academic Marcel of Publishers,		
	Netherlands, 1998		
3.	C.J.King, "Separation Pr	ocesses", Tata Mc Graw-Hill	
	·		
Syllabu	us for Unit Test:		
Unit Test -I		UNIT – I ,II,III	
Unit Te	est -II	UNIT – IV,V,VI	

K10602 ELECTIVE II: BIOPROCESS ENGINEERING

TEACHIN	<u>G SCHEME:</u>	EXAMINATION SCHEME:	CREDITS AI	LOTTED:
Lectures: 4	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Practical:2 I	Hours/Week	Unit Test: 20 Marks	TW/PR/OR: 01	
Fotal : 6	Hours/Week	Assignment: 10 Marks	Total credits: ()5
		Attendance:10 Marks		
		TW :25 Marks		
		Oral:25 Marks		
		Total :150 Marks		
		Topics covered		
UNIT-I		gy & Bioprocess Engineering types & str th cycle phase, effect of substrate con		(08 Hours)
UNIT-II	Simple Enzyme Kinetic equation parameters,line	s, Michaelis-Menten Kinetics, evaluation e weaver, Burk plot, Eadie-Hofstee plot, vity, immobilized enzyme technology ,imm	, factors	(08 Hours)
UNIT-III				(00 110 01 5)
	Selection, Scale-up & Con	ntrol of Bioreactors		
	· ·	s, Fed Batch reactor, sterilization reactor, Ae	ration	
		port in cellular system. Scale up difficulties,		
	Bioreactor instrumentatio			(08 Hours)
UNIT-IV	Recovery & Purification	of Product		
	+ Separation of insoluble pr	oducts. Cell disruption, separation of soluble	products,	
		ication, integration of reaction & separation		(08 Hours)
UNIT-V	Industrial Production of C	Chemicals		(08 Hours)
	Ethanol, Acetic acid, Citr	ic acid, Gluconic acid. Solvents such as Glyc	erol, acetone,	
	butanol. Anti-biotics such	as penicilline, streptomycine, tetracycline. P	roduction of	
	High Fructose Corn Syru	o (HFCS), production of Bakers Yeast Single	Cell Protein	
UNIT-VI	Gene Therapy, Stem	ions of Bioprocess Engg. introduction, Tiss cell, Use of microbes in mineral ben & Biopesticides, Biopolymer Biological	eficiation & oil	(08 Hours)
Term Wor	·k: The term work shall con	sist of the following.		
		nalysis, synthesis, design and development,	experimental worl	k, testing on th
product or s	ystem, generation of new id	leas and concept, modification in the existing	g process/system,	development
computer pr	ograms, solutions, modelin	g and simulation related to the subject. The	student is require	d to choose th
topic in cor	sultation with the subject t	teacher. The student is expected to submit a	a report on the w	ork carried o
hroughout t	he semester.			
-				

Assignment: Each student will submit assignments based on different topics in consultation with faculty, in

the are	the area of bioprocess engineering, keeping track of the recent technological trends and developments.			
Text B	ooks/References:			
1.	Michael L. Shuler, F. Kar	rgi, "Bioprocess Engineering Basic Concept", Prentice Hall, India, 2nd Edition,		
	2002			
2.	Bailey, James Ollis, Davis	F,"Biochemical Engg." Mc Graw-Hill, Publications		
3.	Aiba A, Humphry A. E, "B	Biochemical Engg		
4.	Wingard L. B., "Enzyme Engg."			
5.	Paulinemdoran, "Bioprocess Engg. Principles", Elsevier Publications			
Syllab	Syllabus for Unit Test:			
Unit Te	est -I	UNIT – I ,II,III		
Unit Te	est -II	UNIT – IV,V,VI		

TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LOTTED:
Lectures: 4 Hours/Week		End Semester Examination: 60 Marks	Theory: 04	
Practical:2 I	Hours/Week	Unit Test: 20 Marks	TW/PR/OR: 0	1
Total : 6	Hours/Week	Assignment: 10 Marks	Total credits: ()5
		Attendance:10 Marks		
		TW :25 Marks		
		Oral:25 Marks		
		Total :150 Marks		
		Topics covered		
UNIT-I		selection of separation process: Importance		(08 Hours)
		nic significance, characteristics, inherent sep		
		nfluencing the choice of separation process, so	olvent selection,	
	selection of equipme			
UNIT-II		paration: General short-cut equation, Edmister me		(08 Hours)
		on, alternate short-cut method, Fenske and Underw		(0.0.75
UNIT-III		paration: Distillation, Rigorous method, Lewis-M	atheson method,	(08 Hours)
		od, Amundson-Pontinen method.	1 . 1 1	(00 11
UNIT-IV		ractive distillation: Activity coefficient, equilibri	um relationship,	(08 Hours)
		zeotropes, selection of solvent, calculations	for the second in second in second	(00.11
UNIT-V		paration: Extraction, Rigorous method, stripping and cross-current multiple contact, calculation		(08 Hours)
				(00 11
UNIT-VI	Multicomponent sep	paration: Absorption, Rigorous method for absorpt	tion, calculations.	(08 Hours)

compu	ter programs, solutions, mod	w ideas and concept, modification in the existing process/system, development of eling and simulation related to the subject. The student is required to choose the	
-	5	ct teacher. The student is expected to submit a report on the work carried out	
through	hout the semester.		
Assign	nment: Each student will s	submit assignments based on different topics in consultation with faculty, in	
the are	ea of multicomponent sepa	ration, keeping track of the recent technological trends and developments	
Text B	Books/References:		
1.	Smith B. D., "Design of Ec	quilibrium Stage Processes", McGraw Hill Book Company Ltd.	
2.	King C. J., "Separation Pro	ocesses", McGraw Hill Book Company Ltd.	
3.	Treybal R. E., "Mass Transfer Operation", McGraw Hill		
4.	Treybal R. E., "Liquid Extraction", McGraw Hill Book Company Ltd.		
5.	Phillip C. Wankat, "Equili	brium Staged Separations", Prentice Hall	
Syllab	us for Unit Test:		
Unit To	est -I	UNIT – I ,II,III	
Unit To	est -II	UNIT – IV,V,VI	

	K10602 ELECTIVE II: FOOD PROCESS ENGINEERING			
TEACHING	G SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LOTTED:
Lectures: 4 l	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Practical:2 H	Hours/Week	Unit Test: 20 Marks	TW/PR/OR: 01	
Total : 6I	Hours/Week	Assignment: 10 Marks	Total credits: ()5
		Attendance:10 Marks		
		TW :25 Marks		
		Oral:25 Marks		
		Total :150 Marks		
		•	•	
		Topics covered		
UNIT-I	Γ-I Introduction: Characteristics and nutritional properties of food texture, taste, flavour (08 I		(08 Hours)	
	and aroma. Geometric,	physical and functional properties of fe	ood material.	
	Preparation for food proces	ssing, energy conservation, material and energy	gy balance	
UNIT-II	Processing Methods:			
	e e	pasteurization, freezing, dehydration, canni	ng additives	
		cooking, hydrostatic pressure cooking. Diel	•	
		aspetic processing, infrared radiation proces	Ų	
	and equipment used	aspene processing, minied rubanion proces	, concept	(08 Hours)

	III Drying: Moisture content: Definition, method of determination, direct and indirect methods. Equilibrium moisture content: Hysterisis Effect. Psychometric of air water vapour mixture, Drying mechanism, constant rate period and falling rate period, Method and equipments used, factor affecting rate of drying	
UNIT-	IV Food conservation Operation: Sieve reduction, fibrous foods, dry foods and liquid foods. Theory and equipment, membrane	(08 Hours)
UNIT-	V Material handling: types of candling and conveying system food products, and their design, belt conveyors, screw conveyors, bucket elevator and pneumatic conveyor.	(08 Hours)
UNIT-	VI Preservation of food material: Preservation by drying, preservation by low temperature, chemical preservation .Thermal death time curve	(08 Hours)
Researce product	Work: The term work shall consist of the following. ch survey, literature review and analysis, synthesis, design and development, experimental work t or system, generation of new ideas and concept, modification in the existing process/system, ter programs, solutions, modeling and simulation related to the subject. The student is require	development of
topic ir through	n consultation with the subject teacher. The student is expected to submit a report on the w nout the semester.	ork carried out
topic ir through Assign		vork carried out
topic ir through Assign the are	ment: Each student will submit assignments based on different topics in consultation v a of food process engineering, keeping track of the recent technological trends and develo	vork carried out
topic ir through Assign the are	ment: Each student will submit assignments based on different topics in consultation v	work carried out
topic ir through Assign the are Text B	ment: Each student will submit assignments based on different topics in consultation v ea of food process engineering, keeping track of the recent technological trends and develo ooks/References: Shivshankar B., "Food Processing and Preservation", Prentice Hall of India Pvt. Ltd., New	work carried out
topic ir through Assign the are <u>Text B</u> 1.	nout the semester. ment: Each student will submit assignments based on different topics in consultation v ea of food process engineering, keeping track of the recent technological trends and develo ooks/References: Shivshankar B., "Food Processing and Preservation", Prentice Hall of India Pvt. Ltd., New 2002 Sahay and Singh, "Unit Operation in Agricultural Processing Dennis R. H., " Food Process Engineering"	work carried out
topic ir through Assign the are Text B 1. 2.	nout the semester. ment: Each student will submit assignments based on different topics in consultation v ea of food process engineering, keeping track of the recent technological trends and develo ooks/References: Shivshankar B., "Food Processing and Preservation", Prentice Hall of India Pvt. Ltd., New 2002 Sahay and Singh, "Unit Operation in Agricultural Processing	work carried out
topic ir through Assign the are Text B 1. 2. 3. 4.	nout the semester. ment: Each student will submit assignments based on different topics in consultation vera of food process engineering, keeping track of the recent technological trends and develo ooks/References: Shivshankar B., "Food Processing and Preservation", Prentice Hall of India Pvt. Ltd., New 2002 Sahay and Singh, "Unit Operation in Agricultural Processing Dennis R. H., "Food Process Engineering" Rao M. A. & Rizvi S. S. H, "Engineering Properties of Food	work carried out
topic ir through Assign the are Text B 1. 2. 3. 4.	nout the semester. ment: Each student will submit assignments based on different topics in consultation v ea of food process engineering, keeping track of the recent technological trends and develo ooks/References: Shivshankar B., "Food Processing and Preservation", Prentice Hall of India Pvt. Ltd., New 2002 Sahay and Singh, "Unit Operation in Agricultural Processing Dennis R. H., "Food Process Engineering" Rao M. A. & Rizvi S. S. H, "Engineering Properties of Food us for Unit Test:	work carried out

TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LLOTTED:
	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Practical:2	Hours/Week	Unit Test: 20 Marks	TW/PR/OR: 0	1
Total : 6Hours/Week		Assignment: 10 Marks	Total credits:	
		Attendance:10 Marks		
		TW :25 Marks		
		Oral:25 Marks		
		Total :150 Marks		
		· · ·		
		Topics covered		
UNIT-I		lication : Phenomenon of Fluidisation, Liquid lil		(08 Hours)
		rison with other methods, Advantages and Disad		
		behavior Of Fluidised bed :Fixed beds, minin		
		elocity, and pressure drop, importance of distr	ibutor, voidage,	
UNIT-II		uidity of fluidized beds. n phase in Dense bubbling beds: Single rising bu	hhla Straam of	(00 Harma)
UNII-11		ource, Ordinary Bubbling bed.Exprimental finding		(08 Hours)
	bed model for Emulsi		igs. Dubbinig	
UNIT-III		rough fluidized bed: Experimental findings, Bub	bling bed	(08 Hours)
	model for gas interchange. Evaluation of inter change coefficient. Radial and Axial			(00 110415)
		ss and heat transfer b/w fluid and solid.		
UNIT-IV	Conversion of gas in bubbling beds: Two region model, Model using		(08 Hours)	
		conversion, reaction rate, contacting efficiency,	application to	
		control of bubble size, baffling and scale-up.		
UNIT-V		riation : Entrainment at or above TDH, Entrainm	ent below TDH.	(08 Hours)
		t from dense fluidized bed and its applications	<u> </u>	
UNIT-VI		al operations: Synthesis reactions, cracking and r	reforming of	(08 Hours)
	ydrocarbons, carboniz	zation and gasification. Gas solid reactions		
Term Wo	• k • The term work shall	consist of the following.		
		nd analysis, synthesis, design and development,	avparimental wor	k testing on the
	•	w ideas and concept, modification in the existing	•	•
		eling and simulation related to the subject. The		
		ect teacher. The student is expected to submit		
-	the semester.	I		
Assignmen	t: Each student will su	bmit assignments based on different topics in	n consultation wi	th faculty, in
the area of	fluidization engineerin	ng, keeping track of the recent technological	trends and devel	opments.
1	/References:			
	· · · · ·	uilibrium Stage Processes", McGraw Hill Book	Company Ltd.	
2. Ki	ng C. J., "Separation Pro	cesses", McGraw Hill Book Company Ltd.		
3. Tre	eybal R. E., "Mass Trans	sfer Operation", McGraw Hill		

5.	5. Phillip C. Wankat, "Equilibrium Staged Separations", Prentice Hall		
Syllabı	Syllabus for Unit Test:		
Unit Te	est -I	UNIT – I ,II,III	
Unit Te	Unit Test -II UNIT – IV, V, VI		

K 10604 DISSERTATION STAGE -- I

TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Practical:7 Hours/Week	TW :25 Marks	TW: 21
Total : 7Hours/Week	Total :25 Marks	Total credits: 21

This stage will include comprehensive report on literature survey, design and fabrication of experimental set up and/or development of model, relevant computer programs and the plan for stage II.

K 10603 SEMINAR

TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Practical:5 Hours/Week	TW :25 Marks	TW: 5
Total : 5Hours/Week	Oral:25Marks	Total credits: 5
	Total :50 Marks	

The students will be required to select advanced research topics for the seminar and present the seminar during the semester. A detailed report should also be submitted and assessment will be based on the quality in terms of the research and development.

SELF STUDY PAPER-I

SELF STUDY PAPER -I : OPTIMIZATION TECHNIQUES IN PROCESS DESIGN

TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS A	ALLOTTED :
Lectures: 4	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Fotal: 4 Ho	urs/Week	Internal assessment: 40 Marks	Total credits	:04
		Unit Test: 20 Marks		
		Assignment: 10 Marks		
		Attendance:10 Marks		
		Total :100 Marks		
		Topics covered		
UNIT-I	Introduction to op		,· · ,·	(08 Hours)
		chy of optimization, Essential features of		
		Procedure for solving optimization problems.		
		loping Models for optimization, Classificatio		
		del, Selecting functions to fit empirical dat	a, degree of	
UNIT-II		ion of objective function . Optimization Techniques , Single variable, 1	Multivoriable	(08 Hours)
UNII-II		o constraints ,equality constraints ,inequality c		(vo nours)
UNIT-III	Linear Programm		onstraints	(08 Hours)
UINI I -111	Simplex method, Geometry of LPP, solution to linear simultaneous equations,		(00 110015)	
	Pivotal reduction of a general system of equations, sensitivity Analysis			
		a general system of equations, sensitivity run	ury sis	
UNIT-IV	Non Linear Progra	amming		(08 Hours)
		minimization method, unimodal function,	Dichotomous	
	search, Fibonacci Method, Golden section Method, Interpolation Method,			
	Scanning and brack	eting Method		
UNIT-V	Non linear Prog	ramming unconstrained optimization &	constrained	(08 Hours)
	Optimization			
	Direct Search Meth	nod, Random Search method, Descent Metho	d, Conjugate	
	Gradient Method,	Introduction to NLP constrained optimization	n Direct and	
	Indirect Methods .			
UNIT-VI	Examples and case study for different engineering applications.		S	(08 Hours)
		bmit assignments based on different topics in o		
		es in process design, keeping track of the recen	nt technologica	al trends and
developmen	nts.			
	s/References:			
		D N, "Optimization of Chemical Processes"		Il Publicatior
2. S S	Rao Optimization th	eory and Application, Wiley Eastern Publicati	on	

Syllabus for Unit Test:		
Unit Test -I	UNIT – I ,II,III	
Unit Test -II	UNIT – IV,V,VI	

Г

SELF STUDY PAPER -I: NON CONVENTIONAL ENERGY SYSTEMS

TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Lectures: 4 Hours/Week		End Semester Examination: 60 Marks	Theory: 04	
Total : 4Hours/Week		Unit Test: 20 Marks	Total credits: 04	
		Assignment: 10 Marks		
		Attendance:10 Marks		
		Total :100 Marks		
			·	
		Topics covered		
UNIT-I	Renewable Source	enewable Sources Of Energy		
	Renewable sources of energy such as hydro, solar, wind, biomass, tidal and			(00 11
	geothermal – their availability and limitation. Energy crisis and energy demand			(08 Hours)
	projection.			
UNIT-II	Solar Energy			
	Solar radiation, photovoltaic cell, pyranometer, solar thermal collectors, solar			(08 Hours)
	air heaters, solar constant, solar cell, applications of solar energy.			,
UNIT-III	Wind Energy			
	Wind map of India, mean wind speed and wind density during different			
	months in specific areas. Types of wind mills, their assembly and application			(08 Hours)
	as electric converters, pumping motors. Concept of wind farms, its			(***** *)
	applications.			
UNIT-IV	Bio-Mass Energy			
	Bio-mass as a source of energy, energy plantation, pyrolysis classification and			
	anaerobic fermentation, types of biogas plant, their comparative status, design			(08 Hours)
	and application.			
UNIT-V	Other Alternate Sources Of Energy			
	Tidal power, sites for tidal power plants in India, micro-hydel power station,			(08 Hours)
	± '	limitations and applications of such power p	1	(00 110013)
UNIT-VI	Energy Conversat	** * *		
	Conservation of energy in $-$ domestic application and industries use of fuel			
				(08 Hours)
	•	nt, energy accounting and auditing.	Jvery, energy	
	ucinanu manageme	in, energy accounting and additing.		
Fort Rooks	/References:			
		Renewable Energy Resources Second edition	Taylor & Francis	2006
2. Do	n Twidell & Tony Weir, Renewable Energy Resources, Second edition, Taylor & Francis, 2006 uglas C., Energy Technology Handbook, Tata McGraw Hill Publishers			
		Pollution Control Engineering, Wiley Eastern		
<u>J.</u> Ka		onation control Engineering, whey Easterin		

4.	Majumdar B., A Textbook of Energy Technology, APH Publications
5.	J. T. Mcmullan, R. Morgan and R. B. Murray, Energy Resources and Supply, John Wiley & Sons, London,
	1976
6.	G.D. Rai, Solar Energy Utilization, Khanna Publishers, Delhi
7.	A.W. Culp, Principles of energy conservation, Tata MGH

Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of non conventional energy systems, keeping track of the recent technological trends and developments.

Syllabus for Unit Test:	
Unit Test -I	UNIT – I ,II,III
Unit Test -II	UNIT – IV,V,VI

SEL	F STUDY PAPER -I: N	MECHANICAL ASPECTS IN CHEMIC.	AL ENGINEER	ING
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS AL	LOTTED:
Lectures: 4	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Total : 4Hours/Week		Unit Test : 20 Marks	Total credits: 0	4
		Assignment : 10 Marks		
		Attendance :10 Marks		
		Total :100 Marks		
		· ·	·	
		Topics covered		
UNIT-I	fittings, methods of symbols, design of pip Chemical equipment of vessels, basic theory f support, leg support, support, Ring support	Epiping design and layout, Pipe and its repr pipe joining, piping insulation, Piping ins bing systems, piping isometrics, plot plan an design - mechanical aspects, Design of Sup for vertical vessels, design of skirt support, ring support, horizontal support, sadd t, engineering materials, classification a	sulation, piping d Pipe racks. port for process Bracket or lug le support, leg	(08 Hours) (08 Hours)
UNIT-III	devices such as stea	cal engineering in chemical engineering, Po am turbines, IC engines, different types igeration, ON-OFF valves, Non return an	of pumps, Air	(08 Hours)
UNIT-IV	mechanical vapor con	and heat pumps, Energy conservation in In mpression, heat pumps, various thermody sion heat pumps with liquid sub cooling, w	namic cycles,	(08 Hours)

UNIT-V	Mechanical aspects in chemical process engineering, Alternative routes in process engineering, general approach to plant design, process research and pilot studies, process design and development, preparation of operating manual instructions, cost cutting machines, trouble shooting, green engineering and process intensification.	(08 Hours)
UNIT-V	1	(08 Hours)
	nent: Each student will submit assignments based on different topics in consultation with a of mechanical aspects in chemical engineering, keeping track of the recent technological oments.	-
Text B	ooks/References:	
1.	Coulson and Richardson, Chemical Engineering, Volume 2, Paragon press Oxford	New York
2.	Treybal R.E., Mass transfer Operation Operations, third edition, Mc Hill International F	
3.	Smith R, Chemical Process Design, McGraw Hill International Publishers	uomonens.
4.	Dodge B. F., Chemical Engineering Thermodynamics, McGraw Hill International Publi	shers
5.	Thakori S B and Bhatt B I, Introduction to Process engineering and Design, M	
0.	Companies	
6.	Brownwell L,E, and Young E H, Process equipment design, John Willey and Sons, Inc.	New York
7.	Shingles ,J and MischkaC, Mechanical Engineering Design, McGraw Hill Edition	
8.	Vijayrangan S, and Rajendran I, Materials and Mechanical Engineering Naros	a Publishing
	Company New Delhi, Chenai, Mumbai and Kolkata	
9.	Arora C P, Refrigeration and Air-conditioning, TataMcgraw Publishing Companie Delhi.	es Ltd. New-
10.	Agarawal B, Agarawal C, M, Basic Mechanical Engineering, Wiley India Publishers a	nd Editions.
11.	Myer Kutz ,Mechanical Engineers Hand Book John Willey and Sons (New York)	
12.	Perry R, and Green D, Perrys Chemical Engineers Hand Book Sixth Edition, Students Edition	International
	is for Unit Test:	
Unit Te		
Unit Te	est -II UNIT – IV,V,VI	

TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS AL	LOTTED:
Lectures: 4 Hours/Week		End Semester Examination: 60 Marks	Theory: 04	
Total : 4	Hours/Week	Unit Test : 20 Marks	Total credits: 0	4
		Assignment : 10 Marks		
		Attendance :10 Marks		
		Total:100 Marks		
	1	Topics covered		
UNIT-I	Renewable Feedsto	ion, the twelve basic principles of green ch ck, Reduction of Derivatives, Catalysis me Analysis for Pollution Prevention, In ent Prevention.	s, Design for	(08 Hours
UNIT-II	Green synthetic me Design and develo challenges and oppo	ethods: Microwave synthesis, electro-org pment of environmentally friendly chem ortunities. Materials for green chemistry a nental friendly catalysts, Bio-catalysis,	nical pathways: and technology:	(08 Hours)
UNIT-III	Biochemical conversion	ion: anaerobic digestion, alcohol production n process: hydrolysis and hydrogenation; from algae biological pathways; Storage and	Biophotolysis:	(08 Hours
UNIT-IV	Green innovation & energy technologies innovation-, Eco/gr Energy, Health, Agri	x sustainability: Criteria for choosing ap , life cycle cost; the emerging trends – reen technologies for addressing the probleculture and Biodiversity- WEHAB (eco-res cal sanitation, renewable energy technologies	process/product lems of Water, toration/ phyto-	(08 Hours
UNIT-V	Global warming; gree future energy Sys agreements/convention	enhouse gas emissions, impacts, mitigation stems- clean/green energy technologies ons on energy and sustainability - U on on Climate Change (UNFCC); sustainabl	and adaptation; ; International Jnited Nations	(08 Hours)
UNIT-VI	14064; green finance Programme (UNEP) green tax incentives	ting and ISO 14001; climate change bus sing; financial initiative by United Nation ; green energy management; green product and rebates (to green projects and companies n; business redesign; eco-commerce models.	s Environment management,	(08 Hours)
-	green chemistry and tee	mit assignments based on different topics in chnology, keeping track of the recent technol		•

	3 Volume Set, Green Solvents, Viley-VCH.
2.	Paul T. Anastas, Istvan T. Horvath, Green Chemistry for a Sustainable Future.
3.	V. K. Ahluwalia, M. Kidwai, New Trends in Green Chemistry, Kulwer Academic Publisher.
4.	Paul T, John C., Green Chemistry: Theory and Practice, Oxford University Press, USA.
5.	Baird, C. and Cann, M., Environmental Chemistry, 4 th Edition, W.H. Freeman and Company, New
	York, 2008.
Syllab	ous for Unit Test:

Syllabus for Unit Test:	
Unit Test -I	UNIT – I ,II,III
Unit Test -II	UNIT – IV,V,VI

	SELF ST	UDY PAPER I- CAVITATION TECHN	IQUES	
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LOTTED:
Lectures: 4	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Total : 4	Hours/Week	Unit Test: 20 Marks	Total credits: ()4
		Assignment: 10 Marks		
		Attendance:10 Marks		
		Total :100 Marks		
		Topics covered		
UNIT-I	vapor cavities, Cavit The main effects of flow, Pressure and pr some typical orders	nenon, Definition, Vapor pressure, The ation regimes, Typical situations favorable cavitation in hydraulics, Specific feature ressure gradient, Liquid-vapor interfaces, T of magnitude, Non-dimensional paramet umber at inception, Relative under pressure	e to cavitation , es of cavitating 'hermal effects, ers: Cavitation	(08 Hours)
UNIT-II	Sonoluminescence,	Temperature, Classification of Acoust Sonochemistry, Experimental Factors where Sonochemical Reactions Occur, The	that Control	(08 Hours)
UNIT-III	Synthesis of Inorgan Ultrafine powders an supported nano powd	d nanostructured materials, metal oxides,	metal powders,	(08 Hours)

UNIT-IV	Synthesis of organic Materials Homogeneous reactions, heterogeneous sono chemistry, Synthesis using alkylation reactions, addition reactions, reduction and oxidation reactions etc.	(08 Hours)
UNIT-V	Environmental protection and remediationDegradation of organic pollutants, Water purification, application of cavitationalone, combined application of cavitation and ozone, combined application ofcavitation and ultraviolet light, combined application of cavitation andadvanced oxidation processes(AOPs)	(08 Hours)
UNIT-VI	Other applications of cavitation Polymers: Degradation of polymers, factors affecting polymer degradation, polymer synthesis, ultrasonic processing of polymers. Sonoelectrochemistry: Electroplating in presence of ultrasound, zinc, iron, copper, nickel etc. Sonoelectro - organic synthesis.	(08 Hours)
with facult	t: Each student will submit assignments based on different topics in consultation y, in the area of Cavitation techniques, keeping track of the recent technological developments.	
Text Books	/References:	
1. Jea Do	n-Pierre Franc, Jean-Marie Michel, "Fundamentals of Cavitation", Kluwer Acader rdrecht.	
3. T.	onochemistry- Kirk-Othmer Encyclopedia of Chemical Technology", John Wiley & J. Mason and J. P. Lorimer, "Applied sonochemistry: Uses of power ultrasound in pcessing", Wiley-VCH publishers.	
Syllabus for	r Unit Test:	
Unit Test -I Unit Test -II	UNIT – I ,II,III I UNIT – IV,V,VI	
Unit Test -I	01011 - 10, 0, 01	

SELF STUDY PAPER-I: SAFETY ENGINEERING IN INDUSTRIES

	NG SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LOTTED:
Lectures: 4 Hours/Week		End Semester Examination: 60 Marks	Theory: 04	
Total : 4	4Hours/Week	Unit Test: 20 Marks	Total credits: ()4
		Assignment: 10 Marks		
		Attendance: 10 Marks		
		Total: 100 Marks		
		· · · ·		
		Topics covered		(0.0.75
UNIT-I	V 1	Process Industries, various hazards in industri		(08 Hours)
		ls, case study (one or two), chemical composition		
), first aid measures, fire fighting measures, ac	cidental release	
		protection and storage.		
UNIT-II		lant operation, plant selection, construction, proces	ss system	
	Engineering.			(08 Hours)
UNIT-III	T 1 4 1 11 4			
		pollution control aspects, pollution control acts, v	various	(00 11)
		adling of toxic materials, and industrial gases.	. 11	(08 Hours)
UNIT-IV		ineering ethics, accident and loss statistics, acceptental process, one or two cose studies	table	(00 H arma)
UNIT-V		lental process, one or two case studies ions, identification, MSD sheets, evaluation and co	ntrol	(08 Hours)
UNII-V	Government regulat	ions, identification, MSD sheets, evaluation and co	muroi.	(08 Hours)
UNIT-VI		nitions, location of relief, relief types, relief scenar lief systems, design considerations and recommen		(08 Hours)
Text Book	s/References:			
		ering, Howard S Peavy, Donald R Rowe and	George Tchob	anogloglons.
1. Ei			0	
	lc Graw Hill Book co	ompany.		
М	le Graw Hill Book e			
М	le Graw Hill Book e	ompany. ocess IndustriesG,eorge T Austin, Mc Graw	Hill Internation	
2. SI	le Graw Hill Book en			nal Edition
2. SI	le Graw Hill Book ed nreve s Chemical Pro follution Control in Cl	ocess IndustriesG,eorge T Austin, Mc Graw		nal Edition
2. SI 3. Po Lt	te Graw Hill Book en nreve s Chemical Pro- collution Control in Cl td.	ocess IndustriesG,eorge T Austin, Mc Graw nemical Process Industries, Mahajan S B, Ta	ata Mc Graw H	nal Edition ill edition (P
2. SI 3. Pe Lt 4. In	te Graw Hill Book en nreve s Chemical Pro follution Control in Cl td.	bcess IndustriesG,eorge T Austin, Mc Graw hemical Process Industries, Mahajan S B, Ta Engineering and Design ,Thakore S.B and	ata Mc Graw H	nal Edition ill edition (P
2. SI 3. Pe Lt 4. In	te Graw Hill Book en nreve s Chemical Pro- collution Control in Cl td.	bcess IndustriesG,eorge T Austin, Mc Graw hemical Process Industries, Mahajan S B, Ta Engineering and Design ,Thakore S.B and	ata Mc Graw H	nal Edition ill edition (P
M 2. SI 3. Pot 4. In Pot Pot	Ic Graw Hill Book of nreve s Chemical Pro- ollution Control in Cl td. troduction to process ablishing Company 1	bcess IndustriesG,eorge T Austin, Mc Graw nemical Process Industries, Mahajan S B, Ta Engineering and Design ,Thakore S.B and Ltd. New Delhi	ata Mc Graw H	nal Edition ill edition (P e Graw Hill
Assignmen	Ic Graw Hill Book of nreve s Chemical Pro- collution Control in Cl td. troduction to process ublishing Company 1 nt: Each student will s	beess IndustriesG,eorge T Austin, Mc Graw nemical Process Industries, Mahajan S B, Ta Engineering and Design ,Thakore S.B and Ltd. New Delhi	ta Mc Graw H Bhatt B. I. Mc	nal Edition ill edition (P c Graw Hill th
Assignmen faculty, in	Ic Graw Hill Book of hreve s Chemical Pro- collution Control in Cl td. troduction to process ablishing Company 1 ht: Each student will s the area of safety eng	bcess IndustriesG,eorge T Austin, Mc Graw nemical Process Industries, Mahajan S B, Ta Engineering and Design ,Thakore S.B and Ltd. New Delhi	ta Mc Graw H Bhatt B. I. Mc	nal Edition ill edition (P c Graw Hill th
M2.SI3.Po4.InPoAssignmentfaculty, in	Ic Graw Hill Book of nreve s Chemical Pro- collution Control in Cl td. troduction to process ublishing Company 1 nt: Each student will s	beess IndustriesG,eorge T Austin, Mc Graw nemical Process Industries, Mahajan S B, Ta Engineering and Design ,Thakore S.B and Ltd. New Delhi	ta Mc Graw H Bhatt B. I. Mc	nal Edition ill edition (P c Graw Hill th
2. SI 3. Po 4. In Po Assignment faculty, in trends and	Ic Graw Hill Book of nreve s Chemical Pro- ollution Control in Cl td. troduction to process ublishing Company 1 nt: Each student will s the area of safety eng l developments.	beess IndustriesG,eorge T Austin, Mc Graw nemical Process Industries, Mahajan S B, Ta Engineering and Design ,Thakore S.B and Ltd. New Delhi	ta Mc Graw H Bhatt B. I. Mc	nal Edition ill edition (P e Graw Hill th
Assignment faculty, in trends and Syllabus for	Ic Graw Hill Book of nreve s Chemical Pro- collution Control in Cl td. troduction to process ablishing Company 1 nt: Each student will s the area of safety eng l developments.	becess IndustriesG,eorge T Austin, Mc Graw memical Process Industries, Mahajan S B, Ta Engineering and Design ,Thakore S.B and Ltd. New Delhi	ta Mc Graw H Bhatt B. I. Mc	nal Edition ill edition (P e Graw Hill th
AssignmentAssignmentfaculty, intrends and	Ic Graw Hill Book of hreve s Chemical Pro- collution Control in Cl td. troduction to process ablishing Company 1 ht: Each student will s the area of safety eng l developments. or Unit Test: I	beess IndustriesG,eorge T Austin, Mc Graw nemical Process Industries, Mahajan S B, Ta Engineering and Design ,Thakore S.B and Ltd. New Delhi	ta Mc Graw H Bhatt B. I. Mc	nal Edition ill edition (P c Graw Hill th

SELF STUDY PAPER -I: PETROLEUM	ENGINEERING

L a atur	NG SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LOTTED:
Lectures: 4 Hours/Week		End Semester Examination: 60 Marks	Theory: 04	
Total : 4	4Hours/Week	Unit Test: 20 Marks	Total credits: ()4
		Assignment: 10 Marks		
		Attendance:10 Marks		
		Total: 100 Marks		
		Topics covered		
UNIT-I		eserves Worldwide distribution of oil and	•	(08 Hours)
	Subsurface data sar	npling and data interpretation, Measurement so	caling	
UNIT-II	Origin of Hydrocar	bons, accumulation and migration of hydrocar	rbons,	
	Reservoir traps.			(08 Hours)
UNIT-III	Properties of reser	voir rocks and fluids, Rock - fluid interfa-	ce, Reservoir	
	description by dire	ect and indirect methods, Oil and Gas in place	ce. Chemical,	
	physical and therm	odynamic properties of petroleum and reservo	ir fluids	(08 Hours)
UNIT-IV		d gas wells, Classification of wells, Drilli		
	Ū.	uids.New trends in drilling engineering.	0 1 0	(08 Hours)
UNIT-V		measures in handling of natural gas, trans	portation and	(08 Hours)
	storage of oil and gas ,Storage of oil and gas , Types of storage tanks,		,	
		ge of natural gas Catalytic cracking, Catalyt		
	Hydrodesulfurizati		ie reroring,	
UNIT-VI		nts in Hydrocarbon production techniques,	Hydrocarbon	(08 Hours)
	recovery mechanis	• • •	•	(00 110415)
	International tradin	, , , ,	igy sources,	
	international tradin			
	nt• Fach student will si	ubmit assignments based on different topics in	consultation wi	th faculty in
Assignmer	II. Lach student will st		consultation wi	
	f natrolaum anginaarin		nde and davalo	
	f petroleum engineerin	g, keeping track of the recent technological tre	nds and develo	
the area of			nds and develo	
the area of Text Book	s/References:	g, keeping track of the recent technological tre	nds and develo	
the area of Text Book 1. Br	s/References: radley, "Petroleum Eng	g, keeping track of the recent technological tre gineering Handbook", SPE		pments.
Text Book 1. Bi 2. M	s/ References: radley, "Petroleum Eng lian, M. A., "Petroleun	g, keeping track of the recent technological tre		pments.
Text Book 1. 2. M Pe	s/ References: radley, "Petroleum Englian, M. A., "Petroleun ennwell Publication.	g, keeping track of the recent technological tre gineering Handbook", SPE n Engineering Handbook for Practicing Engine		pments.
the area ofText Book1.Bi2.MPet3.De	s/ References: radley, "Petroleum Englian, M. A., "Petroleum ennwell Publication. eshpande, B.G., "Worl	g, keeping track of the recent technological tre gineering Handbook", SPE n Engineering Handbook for Practicing Engine Id of Petroleum", Wiley.	er", Vol. I and	pments.
Text Book 1. Bi 2. M 96 3. 4. Jo	s/References: radley, "Petroleum Englian, M. A., "Petroleum ennwell Publication. eshpande, B.G., "Worl ohn, F., Cook, M., and	g, keeping track of the recent technological tre gineering Handbook", SPE n Engineering Handbook for Practicing Engine	er", Vol. I and	pments.
Text Book 1. Bi 2. M 96 3. 4. Jo	s/ References: radley, "Petroleum Englian, M. A., "Petroleum ennwell Publication. eshpande, B.G., "Worl	g, keeping track of the recent technological tre gineering Handbook", SPE n Engineering Handbook for Practicing Engine Id of Petroleum", Wiley.	er", Vol. I and	pments.
the area ofText Book1.Bi2.MPe3.De4.JoEl	s/ References: radley, "Petroleum Englian, M. A., "Petroleum ennwell Publication. eshpande, B.G., "Worl ohn, F., Cook, M., and lsevier.	g, keeping track of the recent technological tre gineering Handbook", SPE n Engineering Handbook for Practicing Engine Id of Petroleum", Wiley.	er", Vol. I and	pments.
the area ofText Book1.Bi2.MPe3.De4.JoEl	s/References: radley, "Petroleum Englian, M. A., "Petroleum ennwell Publication. eshpande, B.G., "Worl ohn, F., Cook, M., and lsevier.	g, keeping track of the recent technological tre gineering Handbook", SPE n Engineering Handbook for Practicing Engine Id of Petroleum", Wiley.	er", Vol. I and	pments.

SELF STUDY PAPER- I: FLUID PARTICLE TECHNOLOGY

TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS AI	LOTTED:
Lectures: 4 Hours/Week		End Semester Examination: 60 Marks	Theory: 04	
Total : 4Hours/Week		Unit Test: 20 Marks	Total credits: ()4
		Assignment: 10 Marks		
		Attendance:10 Marks		
		Total: 100 Marks		
		Topics covered		
UNIT-I	Applications of flu			(08 Hours)
		trial application of fluidized beds. Physical	operations and	(00 110 115)
UNIT-II	Fluidization and a	nalysis of phases		
		alysis of phases for gas-solid, liquid-solid,	and gas-liquid-	
		ls. Hydrodynamic characteristics: pressure		
	mapping, and fracti		1, 2	(08 Hours)
UNIT-III	Mixing studies in f	· · · · · · · · · · · · · · · · · · ·		(***********
		cal, system, and operating parameters on pl	hase mixing in	
		Quantification of phase mixing. Develo		
	mathematical model.		opinione of a	(08 Hours)
UNIT-IV		nsfer in fluidized beds		(00 110013)
			of geometrical	
	Mass and heat transfer between fluid and particles. Effect of geometrical, system, and operating parameters on heat and mass transfer coefficients.			
	Application of correlations available for estimating heat and mass transfer			
	coefficients	relations available for estimating heat and	mass transier	(08 Hours)
UNIT-V	Circulating Fluidi	rad Rada		(08 Hours) (08 Hours)
	6		to circulating	(00 110015)
	Fluid and particle distribution in a fluidized bed. Introduction to circulating			
	fluidized bed and its application. Hydrodynamic aspects of circulating			
		dardization of circulating fluidized beds.		(00 11
UNIT-VI		tion system for physical operations, catal		(08 Hours)
	-	three phase fluidization and its standardization	-	
		actional phase hold- up, mass and heat trans	ster coefficient,	
	extent of mixing, et	С.		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,	.1 C 1.
		bmit assignments based on different topics in		
the area of	fluid particle technolo	ogy, keeping track of the recent technological	trends and deve	lopments.
	References:			
1. Dia	-	venspiel, "Fluidization Engineering", 2 nd Ed	ition, Butterwort	h Heineman
199	<i>)</i>].			

3.	Jackson, R., "The Dynamics of Fluidized Particles", Cambridge University Press, New York, 2000.						
4.	 Fan, L. S. And C. Zhu, "Principles of Gas- Solid Flows", Cambridge University Press, New Yor 1998. 						
Syllabi	us for Unit Test:						
Unit Test -I		UNIT – I ,II,III					
Unit Test -II		UNIT – IV,V,VI					

SEM –IV

K 10605 DISSERTATION STAGE –II						
TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:				
Practical:10 Hours/Week	TW :150 Marks	TW & Oral:30				
Total : 10Hours/Week	Oral:75 Marks Total :225 Marks	Total credits: 30				

This is the final stage in the dissertation work. This stage will include comprehensive report on the work carried out at this stage and relevant portions from stage I, including experimental studies, analysis and/or verification of theoretical model, conclusions. The student is required to publish at least one national/international paper based on the dissertation work. The publication/ accepted paper for publication shall be included in the report

SELF STUDY PAPER-II

TEACHING SCHEME: EXAMINATION SCHEME: CREDITS ALLOTTED: Letures: 4 Hours/Week End Semester Examination: 60 Marks Total credits: 04 Total : 4Hours/Week Unit Test: 20 Marks Total credits: 04 Assignment: 10 Marks Total: 100 Marks Introduce: 10 Marks UNIT-I Innovation and the dynamics of technological change. The interactive and non-linear nature of Innovation, Defining the Innovation Need, Dynamics of Technological Change and Systems of Innovation (08 Hours) UNIT-II Theory and practice of processes of technology transfer and diffusion: Commercialization of technology: intellectual property rights. Product innovation: impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III Success factors for product innovation, developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Swort Analyses of company and product, Product Portfolio Analyses: Product (08 Hours) (08 Hours) UNIT-V SWOT Analyses of company and product, Product Portfolio Analyses: Product (08 Hours) (08 Hours) UNIT-VI External transfer practices-bridge to industry, keeping track of the recent technological trends and developments. (08 Hours) Tect Books/References: 1 Mytelk, L. K. and Smith, K.	SELF	STUDY PAPER-II-TECH	NOLOGY TRANSFER PRACTICES	-BRIDGE TO	INDUSTRY		
Total : 4Hours/Week Unit Test: 20 Marks Total credits: 04 Astendance:10 Marks Attendance:10 Marks Interactive and non-linear nature of Innovation, Defining the Innovation Need, Dynamics of Technological Change and Systems of Innovation Need, Dynamics of Technological Change and Systems of Innovation Need, Dynamics of Technological Change and Systems of Innovation Need, Dynamics of Technological Change and Systems of Innovation Need, Dynamics of Technological Change and Systems of Innovation Need, Dynamics of Technological Change and Systems of Innovation Need, Dynamics of Technological Change and Systems of Innovation within OEM (case studies) (08 Hours) UNIT-II Theory and practice of processes of technology transfer and diffusion: Commercialization of technology; intellectual property rights. Product innovation: impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III success factors for product innovation; developing a product innovation strategies interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-V Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, (08 Hours) Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge t	TEACH	ING SCHEME:		CREDITS AI	LOTTED:		
Assignment: 10 Marks Attendance: 10 Marks Total: 100 Marks Total: 100 Marks Innovation and the dynamics of technological change. The interactive and non- linear nature of Innovation, Defining the Innovation Need, Dynamics of Technological Change and Systems of Innovation UNIT-II Theory and practice of processes of technology transfer and diffusion: Commercialization of technology; intellectual property rights. Product innovation: impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III Success factors for product innovation; developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SWOT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Text Books/References: 1 Mytelk, L. K. and Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Socicty", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lun							
Attendance:10 Marks Total:100 Marks Topics covered UNIT-I Innovation and the dynamics of technological change. The interactive and non- linear nature of Innovation, Defining the Innovation Need, Dynamics of Technological Change and Systems of Innovation (08 Hours) UNIT-II Theory and practice of processes of technology transfer and diffusion: Commercialization of technology; intellectual property rights. Product innovation: impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III success factors for product innovation; developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SwoT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Text Books/References: <	Total :	: 4Hours/Week		Total credits: ()4		
Total:100 Marks Total:100 Marks Total:100 Marks UNIT-I Innovation and the dynamics of technological change. The interactive and non- linear nature of Innovation, Defining the Innovation Need, Dynamics of Technological Change and Systems of Innovation Need, Dynamics of (case studies) (08 Hours) UNIT-III Success factors for product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SWOT Analyses of company and product. Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) 1 Mytelk, L. K. and Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2 Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – C							
Topics covered UNIT-I Innovation and the dynamics of technological change. The interactive and non- linear nature of Innovation, Defining the Innovation Need, Dynamics of Technological Change and Systems of Innovation (08 Hours) UNIT-II Theory and practice of processes of technology transfer and diffusion: Commercialization of technology; intellectual property rights. Product innovation: impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III success factors for product innovation; developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SwOT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Inhovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 1 Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society							
UNIT-I Innovation and the dynamics of technological change. The interactive and non-linear nature of Innovation, Defining the Innovation Need, Dynamics of Technological Change and Systems of Innovation (08 Hours) UNIT-II Theory and practice of processes of technology transfer and diffusion: Commercialization of technology; intellectual property rights. Product innovation impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III Success factors for product innovation; developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SWOT Analyses of company and product, Product Portfolio Analyses: Product If Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the are of technology transfer practices-bridge to industry, keeping track of the recent technological trends a Learning Society", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 1 Mytelk, L. K. and Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Socia			Total:100 Marks				
UNIT-I Innovation and the dynamics of technological change. The interactive and non-linear nature of Innovation, Defining the Innovation Need, Dynamics of Technological Change and Systems of Innovation (08 Hours) UNIT-II Theory and practice of processes of technology transfer and diffusion: Commercialization of technology; intellectual property rights. Product innovation impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III success factors for product innovation, developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation and product, Product Portfolio Analyses: Product (08 Hours) Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. 1 Mytelk, L. K. and Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. <tr< td=""><td></td><td></td><td>Topics covered</td><td></td><td></td></tr<>			Topics covered				
linear nature of Innovation, Defining the Innovation Need, Dynamics of Technological Change and Systems of Innovation UNIT-II Theory and practice of processes of technology transfer and diffusion: Commercialization of technology; intellectual property rights. Product innovation: impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III success factors for product innovation; developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Text Books/References: 1 Mytelk, L. & and Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.I. (2003), "Broadening the Analysis of Innovation Systems - Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall,	UNIT-I	Innovation and the dyna		ctive and non-	(08 Hours)		
Image: Technological Change and Systems of Innovation Image: Technology and practice of processes of technology transfer and diffusion: Commercialization of technology; intellectual property rights. Product innovation: impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III success factors for product innovation; developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SwOT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. 1 Mytelk, L. K. and Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Compet	011111				(00 110 115)		
UNIT-II Theory and practice of processes of technology transfer and diffusion: Commercialization of technology; intellectual property rights. Product innovation: impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III success factors for product innovation; developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SWOT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Text Books/References: 1 Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisation				D ynamies of			
Commercialization of technology; intellectual property rights. Product innovation: impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III success factors for product innovation; developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SWOT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-V External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Text Books/References: 1. Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conce	UNIT.II			and diffusion.			
innovation: impact of product innovation, Product Innovation within OEM (case studies) (08 Hours) UNIT-III success factors for product innovation; developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SWOT Analyses of company and product, Product Portfolio Analyses: Product (08 Hours) (08 Hours) UNIT-VI SWOT Analyses of company and product, Product Portfolio Analyses: Product (08 Hours) (08 Hours) UNIT-VI Swe Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Text Books/References: 1. Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elga							
Image: Image							
UNIT-III success factors for product innovation; developing a product innovation strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-IV SwoT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. 1. Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Ch			fourter milovation, i fourter milovation		(08 Hours)		
strategy: Interactive learning and networks of innovation: technology Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SWOT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Stasignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Image: Selection of Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of	UNIT-II		oduct innovation: developing a produ	ct innovation	(00 110013)		
Platforms; firms taxonomy (08 Hours) UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SWOT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Text Books/References: 1. Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of							
UNIT-IV Systems of Innovation and the corporate value chain: fostering clustering effects. Regional innovation strategies (08 Hours) UNIT-V SWOT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. 1. Mytelk, L. K. and Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of							
effects. Regional innovation strategies (08 Hours) UNIT-V SWOT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Text Books/References: 1. Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of	LINIT_IV			ing clustering	(vo nours)		
UNIT-V SWOT Analyses of company and product, Product Portfolio Analyses: Product Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Text Books/References: 1. Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of	01111-11		-	ing clustering	$(09 \text{ H}_{\text{over}})$		
Life Cycle (PLC) Product Innovation and Design consultancies (case studies), New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Text Books/References: 1. Mytelk, L. K. and Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of	LINIT V						
New Product-Service-System development (08 Hours) UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Text Books/References: 1. 1. Mytelk, L. K. and Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of	01111-1	•		•	(00 110013)		
UNIT-VI External trends (PESTED) and company core competences, Strategic Gap, Selection of ideas, Market implementation (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Text Books/References: 1. Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of							
Selection of ideas, Market implementation Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Text Books/References: 1. Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of	LINIT_VI			Strategic Gan	(08 Hours)		
Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Text Books/References: 1. Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of	01111-11			Strategie Gap,	(00 110013)		
 the area of technology transfer practices-bridge to industry, keeping track of the recent technological trends and developments. Text Books/References: Mytelk, L. K. and Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of 		Selection of ideas, wark					
 Mytelk, L. K. a nd Smith, K. (2003), "Interactions Between Policy Learning and Innovation Theory", in "Innovation, Competence Building,And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição,Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of 	the area	of technology transfer practic	•		•		
 Theory", in "Innovation, Competence Building, And Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of 							
 Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of 							
 Elgar 2. Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of 							
 Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of]	Learning Society", Editors: P	arning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundv				
 Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of 							
 Systems – Competition, Organisational Change and Employment Dynamics in the Danish System", in "Innovation, Competence Building, and Social Cohesion In Europe: Towards a Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of 	2.	Lundval, BA., and Christensen, J.L. (2003), "Broadening the Analysis of Innovation					
 Learning Society", Editors: Pedro Conceição, Manuel V. Heitor and Bengt-Åke Lundvall, Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of 	5						
Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of							
Edward Elgar 3. Edquist, C. (1997). "Systems of innovation a introduction" (Chapter 1), in: "Systems of]	Learning Society", Editors: P	edro Conceição, Manuel V. Heitor and E	engt-Åke Lund	vall,		
	3.]	Edquist, C. (1997). "Systems	of innovation a introduction" (Chapter 1), in: "Systems of	of		
Innovation, ed. C. Edquist, pp. 1-35		Innovation", ed. C. Edquist, p	· · ·	-			

Syllabus for Unit Test:	
Unit Test -I	UNIT – I ,II,III
Unit Test -II	UNIT – IV,V,VI

	SELF STUDY	Y PAPER-II: -POLYMER ENGINEER	RING		
FEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS A	ALLOTTED:	
Lectures: 4 I	Hrs/week	End Semester Examination: 60 Marks	Theory: 04		
Fotal: 4 Hrs/	/week	Internal assessment: 40 Marks	Total Credits	5:04	
		Total :100 Marks			
		Topics covered		1	
UNIT-I	Introduction to polymer			(08 Hours)	
			pressure on		
		f polymerization, molecular weight deterr	nination.		
UNIT-II	Polymerization process			(08 Hours)	
		of pthalic anhydride, propylene, acrylon			
	-	, LDPE, HDPE, PVC, PP, PC,	polystyrene,		
	* * *	lyester via terepthalic acid, nylon-6.			
UNIT-III			. 1	(08 Hours)	
	Batch, continuous, plugflow, CSTR, Design consideration of batch reactor, design consideration in high pressure LDPE reactorsLLDPE & HDPE Fluid				
	e	6 1			
UNIT-IV		pes of agitators for polymerization reactors, polymer drying. Acterization & rehalogy. Mechanical properties of polymer,			
UINI I -I V	•	tion temperature (Tg), heat distribution	1 .	(08 Hours)	
	mathematical models				
	determination of polymer	1	e, viscoenty		
UNIT-V		ction moulding, compression moulding	rotational	(08 Hours)	
		ulding, coating polymer blends, & c		(00 110013)	
	polymer alloys, reinforce		omposites		
UNIT-VI		nology - Different types of adhesive	, polvvinvl	(08 Hours)	
		t, polymer applications, identification		(
management.					
Assignment:	Each student will submit	assignments based on different topics in c	consultation w	ith faculty, in	
-		ing track of the recent technological trend		•	
	 _		*		
	/References:				
		nce & technology" by Dr S.D Dawande, 1			
2. Gaw	arikar V.R , Vishvanathar	N.V, Sridhar j, polymer science, new a	ge internation	al p ltd,	
2. Jaw	anikai v.ik, visiivailallal	i i v. v , Situliai J, poryliter selence , llew a	ge memanon	ar p nu,	

	dariyaganj , New delhi.	dariyaganj , New delhi.			
3.	Bhatnagar M.S Text boo	k of polymer vol I, II, III. S.chand & co.ltd New delhi – 55.			
4.	Rao natti S , Design form (1991).	nula for plastic engineering Hanser publication, Munich Viemna, New York			
5.	Pattan Wj, plastic techno 01.	ology, theory, design, and manufacture, Ruston publishing Co Mumbai –			
6.	Athalye A.s plastic material handbook Vol 1 & 2 Multitech publishing Co. Ghatkopar Mumbai – 77.				
Syllab	Syllabus for Unit Test:				
Unit T	Unit Test -I UNIT – I ,II,III				
Unit T	Unit Test -II UNIT – IV, V, VI				

	SELF STUDY PAPER -II: FOOD TECHNOLOGY					
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LOTTED:		
Lectures: 4	Hours/Week	End Semester Examination: 60 Marks	Theory: 04			
Total : 4	Hours/Week	Unit Test : 20 Marks	Total credits: ()4		
		Assignment : 10 Marks				
		Attendance :10 Marks				
	1	Topics covered				
UNIT-I	* *	g: Rheology of solid, semi-solid and liquid fo	oods. Heat	(08 Hours)		
	transfer and thermal death	times, Schmidt plot procedure.				
UNIT-II	Canning of food: Thermal	processing, determining time of heat sterilization	tion process.	(08 Hours)		
	Conductive and convective			, , ,		
UNIT-III	Relencing and freezing of t	foods: Balancing processes, freezing, Ultra-hi	ah tamparatura	(09 Hours)		
UN11-111		erilization, probability of non-sterile unit, Co		(08 Hours)		
	of food, rate of drying, time		invective drynig			
	of food, fate of drying, time	e of drying.				
UNIT-IV	Membrane processing of li	quid foods: Principles, membrane configurati	on, types,	(08 Hours)		
	evaporation concentration	of liquid food, evaporator load calculation.				
UNIT-V	-V Osmotic dehydration of food: Mechanism of osmotic dehydration, kinetics. Microwave			(08 Hours)		
	-	food, heat and mass transfer in frying.		(00 110015)		
UNIT-VI	•	extrusion process, role of moisture content.	00	(08 Hours)		
	foods, packaging materials	, shelf life, water transmission rate, prediction	n of packaging			

	time. Process control in food manufacturing.				
	ment: Each student will submit assignments based on different topics in consultation with faculty, in				
the are	ea of food technology, keeping track of the recent technological trends and developments				
Text I	Books/References:				
1.	Frazier, W.C., and Westhoff, D.C., (1995). Food Microbiology. 4th ed. New Delhi: Tata McGraw-				
	Hill publishing Company Limited.				
2.	Basic Food Microbiology; Bannett, Chapman and Hall				
3.	Potter, Norman N., Hotchkiss, Joseph H., Food Science, fifth edition.				
4	Frazier, Food Microbiology, Tata McGraw Hill, (2007).				
5.					
	Norman W. Desrosier, James N. Desrosier, The technology of food preservation, 4th ed. Westport,				
	Conn. : AVI Pub. Co., c1977.				
6.	Fennema Karrel, Principles of Food Science, Vol-I, Marcel Dekker publisher.				
7.	Food Science by Mudambi Robinson RK; 1996; Modern Dairy Technology, Vol 1 & 2; Elsevier				
7.	Applied Science Pub.				
8.	Charm SE, The Fundamentals of Food Engineering; 1963, AVI Pub.				
9.	Sharan K., Mulvaney S. J., Rizvi S. H., Food process engineering, Wiley Interscience Publication				
Syllab	ous for Unit Test:				
Unit T	Yest -I UNIT – I ,II,III				
Unit T	Vest -II UNIT – IV,V,VI				

	SELF STUDY PAPER-II- MODELING AND SIMULATION OF PROCESSI					
TEACHIN	NG SCHEME:	EXAMINATION SCHEME:	CREDITS AI			
	Hours/Week	End Semester Examination: 60 Marks	Theory : 04			
	4 Hours/Week	Unit Test: 20 Marks	Total credits:	04		
		Assignment: 10 Marks				
		Attendance:10 Marks				
		Total :100 Marks				
		-	•			
		Topics covered				
UNIT-I	Introduction:	<u>.</u>		(08 Hours)		
	Models, Open loo	p systems, Feedback controls, cascade co	ntrols, System			
	analysis from mode	els, The control engineers role.				
UNIT-II	Modeling of dyna	mic systems:		(08 Hours)		

Mathematical basis, Application of frequency response diagram, using MATLAB to obtain gain margin (GM) and phase margin (PM).using MATLAB to produce a Nichols Chart, comparison of various methods. (08 Hours) UNIT-IV Process identification: Purpose, Direct methods, time domain fitting of step test data, direct sine wave testing, digital evaluation of Fourier transformation, auto tuning, approximate (08 Hours) UNIT-V Building blocks of feed forward neural network: Building blocks of ANN, processing elements, connections, weights, activation and transfer functions, learning rules (08 Hours) UNIT-VI Computer Simulation for various industrial applications. (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, i the area of modeling and simulation of processes, keeping track of the recent technological trends and developments 1 Text Books/References: 1 Franks R. E. G., "Modeling and Simulation in Chemical Engineering", Wiley Interscience, NY J John Ingam, Irving J. Dunn, "Chemical Engineering Dynamic Modeling with PC Simulation", V Publishers 9 3 William L. Luyben, "Process Modeling Simulation and Control for Chemical Engineers", McGraw I International Edition Publishing Company 4 4. Himmeblau D., K. B. Bischoff, " Process Analysis and Simulation", John Wiely & Sons 5 5. Wayne Bequette, " Process Modeling Analysis and Simulation", Analysis and Simulation", John Wiely & Sons 5			es, Modeling physical components, Obtaining a transfer sis or Simulation with SIMULINK. Modeling of various			
Purpose, Direct methods, time domain fitting of step test data, direct sine wave testing, digital evaluation of Fourier transformation, auto tuning, approximate transfer functions. (08 Hours Direct Methods, activation of Fourier transformation, auto tuning, approximate transfer functions. UNIT-V Building blocks of feed forward neural network: Building blocks of ANN, processing elements, connections, weights, activation and transfer functions, learning rules (08 Hours Direct Methods, activation and transfer functions, learning rules UNIT-VI Computer Simulation for various industrial applications. (08 Hours Direct Methods, and developments Assignment: Each student will submit assignments based on different topics in consultation with faculty, i the area of modeling and simulation of processes, keeping track of the recent technological trends and developments Text Books/References: 1. Franks R. E. G., "Modeling and Simulation in Chemical Engineering", Wiley Interscience, NY 2. John Ingam, Irving J. Dunn, "Chemical Engineering Dynamic Modeling with PC Simulation", Vi Publishers 3. William L. Luyben, "Process Modeling Simulation and Control for Chemical Engineers", McGraw I International Edition Publishing Company 4. Himmelblan D., K. B. Bischoff, "Process Analysis and Simulation", John Wiely & Sons 5. Wayne Bequette, "Process Dynamics, Modeling and Model Analysis", Academic Press, 2001. 7. Singiresu S. Rao, "Applied Numerical Methods for Engineers and Scientists" Prentice Hall Upper Sad River,	UNIT-III	Mathematical basi MATLAB to ob	s, Application of frequency response diagram, using tain gain margin (GM) and phase margin (PM).using	(08 Hours)		
Building blocks of ANN, processing elements, connections, weights, activation and transfer functions, learning rules (08 Hours) UNIT-VI Computer Simulation for various industrial applications. (08 Hours) Assignment: Each student will submit assignments based on different topics in consultation with faculty, i the area of modeling and simulation of processes, keeping track of the recent technological trends and developments (08 Hours) Text Books/References: 1. Franks R. E. G., "Modeling and Simulation in Chemical Engineering", Wiley Interscience, NY 2. John Ingam, Irving J. Dunn, "Chemical Engineering Dynamic Modeling with PC Simulation", Vepublishers 3. William L. Luyben, "Process Modeling Simulation and Control for Chemical Engineers", McGraw I International Edition Publishing Company 4. Himmelblau D., K. B. Bischoff, " Process Analysis and Simulation", John Wiely & Sons 5. Wayne Bequette, " Process Dynamics, Modeling, Analysis and Simulation", Prentice Hall 6. K. M. Hangos and I. T. Cameron, "Process Modeling and Model Analysis", Academic Press, 2001. 7. Singiresu S. Rao, "Applied Numerical Methods for Engineers and Scientists" Prentice Hall, Upper Sad River, NJ, 2001 8. W. F. Ramirez, "Computational Methods for Process Simulation", 2 nd ed., Butterworths, 1997 9. Modeling and analysis of dynamic systems, by C.M. Close, D.H. Fredrick and J. C. Newell, John Wiley Sons, 2002 <td>UNIT-IV</td> <td>Purpose, Direct met testing, digital eval</td> <td>thods, time domain fitting of step test data, direct sine wave</td> <td>(08 Hours)</td>	UNIT-IV	Purpose, Direct met testing, digital eval	thods, time domain fitting of step test data, direct sine wave	(08 Hours)		
Assignment: Each student will submit assignments based on different topics in consultation with faculty, i the area of modeling and simulation of processes, keeping track of the recent technological trends and developments Text Books/References: 1. Franks R. E. G., "Modeling and Simulation in Chemical Engineering", Wiley Interscience, NY 2. John Ingam, Irving J. Dunn, "Chemical Engineering Dynamic Modeling with PC Simulation", Volublishers 3. William L. Luyben, "Process Modeling Simulation and Control for Chemical Engineers", McGraw I International Edition Publishing Company 4. Himmelblau D., K. B. Bischoff, "Process Analysis and Simulation", John Wiely & Sons 5. Wayne Bequette, "Process Dynamics, Modeling, Analysis and Simulation", Prentice Hall 6. K. M. Hangos and I. T. Cameron, "Process Modeling and Model Analysis", Academic Press, 2001. 7. Singiresu S. Rao, "Applied Numerical Methods for Process Simulation", 2 nd ed., Butterworths, 1997 9. Modeling and analysis of dynamic systems, by C.M. Close, D.H. Fredrick and J. C. Newell, John Wiley Sons, 2002	UNIT-V	Building blocks	of ANN, processing elements, connections, weights,	(08 Hours)		
 the area of modeling and simulation of processes, keeping track of the recent technological trends and developments Text Books/References: Franks R. E. G., "Modeling and Simulation in Chemical Engineering", Wiley Interscience, NY John Ingam, Irving J. Dunn, "Chemical Engineering Dynamic Modeling with PC Simulation", Vol Publishers William L. Luyben, "Process Modeling Simulation and Control for Chemical Engineers", McGraw H International Edition Publishing Company Himmelblau D., K. B. Bischoff, "Process Analysis and Simulation", John Wiely & Sons Wayne Bequette, "Process Dynamics, Modeling, Analysis and Simulation", Prentice Hall K. M. Hangos and I. T. Cameron, "Process Modeling and Model Analysis", Academic Press, 2001. Singiresu S. Rao, "Applied Numerical Methods for Engineers and Scientists" Prentice Hall, Upper Sad River, NJ, 2001 W. F. Ramirez, "Computational Methods for Process Simulation", 2nd ed., Butterworths, 1997 Modeling and analysis of dynamic systems, by C.M. Close, D.H. Fredrick and J. C. Newell, John Wiley Sons, 2002 	UNIT-VI	Computer Simulation	on for various industrial applications.	(08 Hours)		
 Franks R. E. G., "Modeling and Simulation in Chemical Engineering", Wiley Interscience, NY John Ingam, Irving J. Dunn, "Chemical Engineering Dynamic Modeling with PC Simulation", Ver Publishers William L. Luyben, "Process Modeling Simulation and Control for Chemical Engineers", McGraw H International Edition Publishing Company Himmelblau D., K. B. Bischoff, "Process Analysis and Simulation", John Wiely & Sons Wayne Bequette, "Process Dynamics, Modeling, Analysis and Simulation", Prentice Hall K. M. Hangos and I. T. Cameron, "Process Modeling and Model Analysis", Academic Press, 2001. Singiresu S. Rao, "Applied Numerical Methods for Engineers and Scientists" Prentice Hall, Upper Sad River, NJ, 2001 W. F. Ramirez, "Computational Methods for Process Simulation", 2nd ed., Butterworths, 1997 Modeling and analysis of dynamic systems, by C.M. Close, D.H. Fredrick and J. C. Newell, John Wiley Sons, 2002 						
 John Ingam, Irving J. Dunn, "Chemical Engineering Dynamic Modeling with PC Simulation", Ver Publishers William L. Luyben, "Process Modeling Simulation and Control for Chemical Engineers", McGraw H International Edition Publishing Company Himmelblau D., K. B. Bischoff, "Process Analysis and Simulation", John Wiely & Sons Wayne Bequette, "Process Dynamics, Modeling, Analysis and Simulation", Prentice Hall K. M. Hangos and I. T. Cameron, "Process Modeling and Model Analysis", Academic Press, 2001. Singiresu S. Rao, "Applied Numerical Methods for Engineers and Scientists" Prentice Hall, Upper Sad River, NJ, 2001 W. F. Ramirez, "Computational Methods for Process Simulation", 2nd ed., Butterworths, 1997 Modeling and analysis of dynamic systems, by C.M. Close, D.H. Fredrick and J. C. Newell, John Wiley Sons, 2002 			and Simulation in Chemical Engineering" Wiley Interscience N	V		
 International Edition Publishing Company 4. Himmelblau D., K. B. Bischoff, "Process Analysis and Simulation", John Wiely & Sons 5. Wayne Bequette, "Process Dynamics, Modeling, Analysis and Simulation", Prentice Hall 6. K. M. Hangos and I. T. Cameron, "Process Modeling and Model Analysis", Academic Press, 2001. 7. Singiresu S. Rao, "Applied Numerical Methods for Engineers and Scientists" Prentice Hall, Upper Sad River, NJ, 2001 8. W. F. Ramirez, "Computational Methods for Process Simulation", 2nd ed., Butterworths, 1997 9. Modeling and analysis of dynamic systems, by C.M. Close, D.H. Fredrick and J. C. Newell, John Wiley Sons, 2002 	2. John Publ	n Ingam, Irving J. D lishers	unn, "Chemical Engineering Dynamic Modeling with PC Sin	nulation", VCH		
 5. Wayne Bequette, "Process Dynamics, Modeling, Analysis and Simulation", Prentice Hall 6. K. M. Hangos and I. T. Cameron, "Process Modeling and Model Analysis", Academic Press, 2001. 7. Singiresu S. Rao, "Applied Numerical Methods for Engineers and Scientists" Prentice Hall, Upper Sad River, NJ, 2001 8. W. F. Ramirez, "Computational Methods for Process Simulation", 2nd ed., Butterworths, 1997 9. Modeling and analysis of dynamic systems, by C.M. Close, D.H. Fredrick and J. C. Newell, John Wiley Sons, 2002 	Inter	rnational Edition Publi	shing Company	, McGraw Hill		
 6. K. M. Hangos and I. T. Cameron, "Process Modeling and Model Analysis", Academic Press, 2001. 7. Singiresu S. Rao, "Applied Numerical Methods for Engineers and Scientists" Prentice Hall, Upper Sad River, NJ, 2001 8. W. F. Ramirez, "Computational Methods for Process Simulation", 2nd ed., Butterworths, 1997 9. Modeling and analysis of dynamic systems, by C.M. Close, D.H. Fredrick and J. C. Newell, John Wiley Sons, 2002 						
 Singiresu S. Rao, "Applied Numerical Methods for Engineers and Scientists" Prentice Hall, Upper Sad River, NJ, 2001 W. F. Ramirez, "Computational Methods for Process Simulation", 2nd ed., Butterworths, 1997 Modeling and analysis of dynamic systems, by C.M. Close, D.H. Fredrick and J. C. Newell, John Wiley Sons, 2002 						
 W. F. Ramirez, "Computational Methods for Process Simulation", 2nd ed., Butterworths, 1997 Modeling and analysis of dynamic systems, by C.M. Close, D.H. Fredrick and J. C. Newell, John Wiley Sons, 2002 Syllabus for Unit Test:	7. Sing	giresu S. Rao, "Applied Numerical Methods for Engineers and Scientists" Prentice Hall, Upper Saddle				
 9. Modeling and analysis of dynamic systems, by C.M .Close, D.H. Fredrick and J. C. Newell, John Wiley Sons, 2002 Syllabus for Unit Test: 			ional Methods for Process Simulation", 2 nd ed., Butterworths, 1997	,		
•	9. Mod	leling and analysis of				
•						
	*	Unit Test:				
Unit Test -IUNIT – I ,II,IIIUnit Test -IIUNIT – IV,V,VI						

SELF STUDY PAPER -II: NANOSCIENCE

	NG SCHEME:	EXAMINATION SCHEME:	CREDITS AI	LLOTTED:	
Lectures:	4 Hours/Week	End Semester Examination: 60 Marks	Theory: 04		
Total :	4Hours/Week	Unit Test: 20 Marks	Total credits:)4	
		Assignment: 10 Marks			
		Attendance:10 Marks			
		Total: 100 Marks			
		Topics covered			
UNIT-I	Introduction. Scient	ific Revolutions – Types of nanor	nachines and		
		odic table-Atomic structure molecules and j			
	Molecular and Atom	ic size -surfaces and dimensional space -	Top down and	(08 Hours)	
	bottom up.				
UNIT-II	*	esis methods, Introduction to Nano sca	le materials -		
0111111	•	sing, method of nano structured materials			
	• •	wet chemical synthesis – sol-gel process	1 1	(08 Hours)	
		isation processing, chemical vapor conder		(00 110015)	
	composite synthesis -		isution nullo		
UNIT-III		ties Opportunity at the nano scale - Length	and time scale		
		/ landscapes-Inter dynamic aspects of in		(08 Hours)	
	forces			(00 110013)	
UNIT-IV		no wires-Nano tubes; 2D and 3D film	ns: Nano and		
	•	nano machines-biological membranes.	ins, runo una	(08 Hours)	
UNIT-V	*	f nanostructured materials, Influence of Na	ano structuring		
	• • •	ptical, electronic, magnetic and chemica	-		
	-		1 1	(08 Hours)	
	gramsize effects on strength of metals optical properties of quantum dots and quantum wires carbon nano tubes -magnetic behavior				
UNIT-VI	÷	ce chemistry of tailored monolayer -sel	lf assembling.		
			0		
	Characterization Techniques: X-ray Diffraction, Scanning Electron Microscopy (SEM), Transmission Electron microscopy (TEM), Optical (08 Hou			(08 Hours)	
		Force Micrograph (AFM), Partical Size A			
	spectroscopy, Atomic	Toree Micrograph (At M), Tartear Size A	naryzer.		
Assignme	nt: Each student will sub	mit assignments based on different topics ir	on consultation wi	th faculty, in	
0		rack of the recent technological trends and			
		<u> </u>	-		
	ks/References:				
1. C	Charles P. Poole, Frank J. Owens, "Introduction to Nanotechnology", Wiley Interscience				
2. B	B S Murty, P Shankar, Baldev Raj, B B Rath, James Murday, "Textbook of Nanoscience				
N	Nanotechnology" Universities Press (India) Private Limited				
	6.	er, "Nanotechnology: A gentle introduction to	the next Big Idea	", Prentice Hall.	
	1 st Edition				
	Yury Gogotsi, "Nanomaterials Handbook", CRC Press, Taylor & Francis Group				
	Gu [°] nter Schmid, "Nanoparticles From Theory to Application", Wiley-VCH Verlag GmbH & Co C. Br'echignac P. Houdy M. Lahmani, "Nanomaterials and Nanochemistry", Springer Berlin Heidelberg				
6. C	. Di ecilignac P. Houdy M.	Lannani, manomateriais and manochemistry	, springer Berlin	neidelberg	

	New York			
7.	Kenneth J. Klabunde, "Nanoscale Materials in Chemistry", John Wiley & Sons, Inc			
8.	Alain Nouailhat, "An Introduction to Nanoscience and Nanotechnology", Wiley-ISTE; 1st Edition			
Syllabus for Unit Test:				
Unit Test -I		UNIT – I ,II,III		
Unit Te	est -II	UNIT – IV,V,VI		

SELF STUDY PAPER -II: PETROCHEMICAL ENGINEERING

TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Lectures: 4 Hours/Week		End Semester Examination: 60 Marks	Theory: 04	
Total : 4I	ours/Week Unit Test: 20 Marks Total cre		Total credits: ()4
		Assignment: 10 Marks		
		Attendance:10 Marks		
		Total:100 Marks		
		Topics covered		
UNIT-I	Existing Eaglstock Sc	enario Fossil fuel feedstock, Coal, Na	tural Gas and	(08 Hours)
UNIT-I	e	resent and Future, Production Trends, S		(00 110013)
		on and utilization pattern of existing f		
		o, Cycle of oil prices, Need for alternativ		
	Demand suppry scenari	o, Cycle of on prices, Need for alternativ	e leeuslocks	
UNIT-II	Non conventional Foss	sil Fuels ,Coal Bed Methane, Coal Gasi	fication Shale	
		s, Potential, and Technologies for explo		
	resources, Cost factor	s, rotential, and reenhologies for explo-	itation of these	
	resources, cost factor			(08 Hours)
UNIT-III	Coal Gasification Cher	nistry and Technology for coal gasificati	on and Syngas	(00 110415)
	production, Fischer TropschSynthesis, Chemistry, Catalyst and Process			
	Technology, Other outl	1 5 7 57 5	und 1100000	
	reennoiogy, outer out			(08 Hours)
UNIT-IV	Alco Chemicals -Path	ways and technologies for chemicals	from ethanol.	(00 110415)
- · ·		tanol, isobutanol, Lube oil additives, Octa		(08 Hours)
UNIT-V		l gas engineering, chemical composition		(08 Hours)
	Processing of Petroleur		8,	· · · ·
UNIT-VI	ē	in Petrochemical Industry		(08 Hours)
				(,
Assignment	: Each student will subm	it assignments based on different topics in	n consultation wi	th faculty. in
		ng, keeping track of the recent technologi		
		<i>o</i> , <u>i</u> <i>o</i>		
Text Books	/References:			
1. Sat	terfield C. N., "Heteroger	neous Catalysis in Industrial Practice", Se	econd Edition,	
	Graw Hill, 1993	,	,	

2.	Smith J. M., "Chemical Engineering Kinetics", Third Edition, McGraw Hill.		
3.	Froment G. F. and Bischoff, K. B. "Chemical Reactor Analysis and Design", John Wiley		
	& Sons.		
4.	John, F., Cook, M., and Graham, M., "Hydrocarbon Exploration and Production",		
	Elsevier.		
Syllabus for Unit Test:			
Unit Test -I		UNIT – I ,II,III	
Unit Test -II		UNIT – IV,V,VI	

SELF STUDY PAPER -II: PHYSICAL CONCEPTS OF UNIT OPERATIONS

TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Lectures: 4	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Total : 4Hours/Week		Unit Test: 20 Marks	Total credits: ()4
		Assignment: 10 Marks		
		Attendance:10 Marks		
		Total: 100 Marks		
		Topics covered		
UNIT-I	Vapor-Liquid Equili	brium, relative volatility, boiling point diagram	Raolts law, Mc	(08 Hours)
	· · ·	Lewis-Sorel method, reflux ratio, partial c		· · · · · · · · · · · · · · · · · · ·
		steam distillation, different types of columns and		
	ulugiulli, illeotropes,	securi distritution, different types of conditions and	unury 515.	
UNIT-II	Applications of lic	quid-liquid extraction, difference between	distillation and	
	extraction, Distributio	n coefficient, ternary systems, selection of so	olvent, different	
		arious types of extraction equipments.		
				(08 Hours)
UNIT-III				
	Equilibrium data,	solubility curves, crystallization theory, cl	lassification of	
		nents, types of crystallizers, mechanism of crystal		(08 Hours)
UNIT-IV	Application of adso	rption, nature of adsorption, types of adsorption	tion, adsorption	
	Isotherms, different s	tages of adsorption, breakthrough curves.		
				(08 Hours)
UNIT-V	Introduction to leaching operation, equilibrium diagram, various stages of operation,			(08 Hours)
	Countercurrent leach	ing operation, leaching of fine solids, dorr agitato	r.	
UNIT-VI	General definitions of drying, equilibrium in drying, rate of drying curve, General		(08 Hours)	
	classification and typ			. ,
		bmit assignments based on different topics in	1,	1 6 1/ 1

developments				
Text Books/References:				
1.	1. Coulson J,M. and Richardson Chemical Engineering Volume 2			
2.	Pergaon Press, Oxford, New York (USA) King C, J.Separation ProcessesMc Graw – Hill Publications			
Syllabus for Unit Test:				
Unit Test -I		UNIT – I ,II,III		
Unit Test -II		UNIT – IV,V,VI		

	~	APER- II: MULTIPHASE REACTOR EN		
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS A	LLOTTED:
	Hours/Week	End Semester Examination: 60 Marks	Theory: 04	
Total : 4Hours/Week		Unit Test: 20 Marks	Total credits:	04
		Assignment: 10 Marks		
		Attendance:10 Marks		
		Total: 100 Marks		
		Topics covered		
UNIT-I		tiphase Reactor Engineering		(08 Hours)
	Types, Classification, Application of Industrial Importance			
UNIT-II	Notable industrial he equilibrium criteria t constant. Estimation standard state of the kinetics for heterogen	modynamics and kinetics ble industrial heterogeneous systems and thermodynamic role. Application of ibrium criteria to chemical reactions. The Gibbs energy change and equilibrium tant. Estimation of equilibrium constant for heterogeneous system by defining lard state of the phases involved. Determination of rate controlling step: intrinsic ics for heterogeneous systems.		
UNIT-III	Hydrodynamic Characteristics Hydrodynamic characteristics of different multiphase reactors: Mechanically Agitated Contactors (MAC), Bubble Columns, Slurry Reactors, Fluidized Beds, Loop Reactors and Modified Versions			(08 Hours
UNIT-IV	Mixing Studies Effect of geometrical, system, and operating parameters on phase mixing in multiphase reactors. Quantification of phase mixing. Development of a mathematical model.			(08 Hours
UNIT-V		Mass Transfer Studies		(08 Hours)
		, system, and operating parameters on heat ransf Quantification of heat transfer coefficient.		

	for estimation of ma multiphase reactor. E transfer coefficient in	e to different multiphase reactors. Experimental techniques used ass transfer coefficient and selection of suitable technique for a Effect of geometrical, system, and operating parameters on mass a multiphase reactors. Quantification of mass transfer coefficient. ations available to different multiphase reactors.			
UNIT-VI		gn Aspects of Multiphase Reactors ure drop, Fractional phase hold- up, mass and heat transfer coefficient, extent of ng, etc.			
0	Assignment: Each student will submit assignments based on different topics in consultation with faculty, in the area of multiphase rector engineering, keeping track of the recent technological trends and developments				
Text Books	/References:				
		M. Sharma, "Heterogeneous Reactions", 2 nd Edition, Volume I and	l II.		
2. G. 1	G. B. Tatterson, "Fluid Mixing and Gas Dispersion in Stirred Reactors", 10 th Edition, Academic Press, London, 1994				
3 W.	V. D. Deckwer, "Bubble Column Reactors", Cambridge University Press, New York, 2000.				
4 Dia	iazo Kunji and O. Levenspiel, "Fluidization Engineering", 2 nd Edition, Butterworth Heinemann, 1991.				
5 J. F	J. F. Devidson and Harrison, "Fluidization", 10 th Edition, Academic Press, London, 1994.				
Syllabus for Unit Test:					
Unit Test -I		UNIT – I ,II,III			
Unit Test -II		UNIT – IV,V,VI			